Using SAS for statistical modeling: MONTE CARLO simulations

被引:0
|
作者
Mulvenon, SW [1 ]
Betz, MA [1 ]
机构
[1] Univ Arkansas, Fayetteville, AR 72701 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The development of new statistical formulae generally requires various mathematical derivations to clearly prove the accuracy and usefulness of the new formulae. However, an additional verification of the new formulae is also becoming standard and that is Monte Carlo simulation. Monte Carlo simulations provide a procedure for comparing new formulae versus current formulae and a forum to assess their relative effectiveness. The SAS(R) statistical computing software is very useful in this process and the current paper provides a model of how this can be completed. A series of new formulae for computing statistical power are generated and compared with a current procedure using Monte Carlo simulation. The procedures used in SAS for this process are PROC IML, PROC APPEND, PROC MEANS, and PROC ANOVA. The programs and statistical analyses are appropriate for all levels of SAS users and in particular those interested in statistical modeling.
引用
收藏
页码:1012 / 1017
页数:6
相关论文
共 50 条
  • [1] Statistical Modeling of Gan Hemt Based on Monte Carlo Simulations
    Chen, Zhikai
    Xu, Yuehang
    Xu, Ruimin
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION PROBLEM-SOLVING (ICCP), 2015, : 105 - 108
  • [2] Glassy and polymeric ionic conductors:: Statistical modeling and Monte Carlo simulations
    Duerr, O.
    Dieterich, W.
    [J]. PROCEEDINGS OF THE 1ST INTERNATIONAL DISCUSSION MEETING ON SUPERIONIC CONDUCTOR PHYSICS, 2007, : 77 - +
  • [3] Modeling neutron guides using Monte Carlo simulations
    Wang, DQ
    Robertson, JL
    Crow, ML
    Wang, XL
    Lee, WT
    Hubbard, CR
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2002, 479 (2-3): : 461 - 466
  • [4] Nonlinear statistical modeling and yield estimation technique for use in Monte Carlo simulations
    Swidzinski, JF
    Chang, K
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2000, 48 (12) : 2316 - 2324
  • [5] Monte Carlo simulations for statistical physics: Janus
    Belletti, F.
    Cotallo, M.
    Cruz, A.
    Fernandez, L. A.
    Gordillo-Guerrero, A.
    Guidetti, M.
    Maiorano, A.
    Mantovani, F.
    Marinari, E.
    Martin-Mayor, V.
    Munoz Sudupe, A.
    Navarro, D.
    Parisi, G.
    Perez-Gaviro, S.
    Rossi, M.
    Ruiz-Lorenzo, J. J.
    Saenz-Lorenzo, J. F.
    Schifano, S. F.
    Sciretti, D.
    Tarancon, A.
    Tripiccione, R.
    Velasco, J. L.
    Yllanes, D.
    Zanier, G.
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2008, 123 (6-7): : 972 - 974
  • [6] Using SAS for Monte Carlo simulation research in SEM
    Fan, XT
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2005, 12 (02) : 299 - 333
  • [7] Modeling of Disordered Protein Structures Using Monte Carlo Simulations and Knowledge-Based Statistical Force Fields
    Ciemny, Maciej Pawel
    Badaczewska-Dawid, Aleksandra Elzbieta
    Pikuzinska, Monika
    Kolinski, Andrzej
    Kmiecik, Sebastian
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (03):
  • [8] Probabilistic modeling of seismically triggered landslides using Monte Carlo simulations
    Wang, Hua-Bin
    Sassa, Kyoji
    [J]. Yantu Lixue/Rock and Soil Mechanics, 2007, 28 (12): : 2565 - 2569
  • [9] Probabilistic modeling of seismically triggered landslides using Monte Carlo simulations
    Wang Huai-bing
    Sassa, Kyoji
    [J]. ROCK AND SOIL MECHANICS, 2007, 28 (12) : 2565 - 2569
  • [10] Modeling cellular adhesion with Monte Carlo Simulations
    Sunnick, Eva
    Janshoff, Andreas
    Geil, Burkhard
    [J]. EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2011, 40 : 117 - 118