Photonic ququart logic assisted by the cavity-QED system

被引:5
|
作者
Luo, Ming-Xing [1 ]
Deng, Yun [2 ]
Li, Hui-Ran [1 ]
Ma, Song-Ya [3 ]
机构
[1] Southwest Jiaotong Univ, Informat Secur & Natl Comp Grid Lab, Chengdu 610031, Peoples R China
[2] Sichuan Univ Sci & Engn, Sch Comp Sci, Zigong 64300, Peoples R China
[3] Henan Univ, Sch Math & Stat, Kaifeng 475004, Peoples R China
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
基金
中国国家自然科学基金; 爱尔兰科学基金会;
关键词
SINGLE QUANTUM-DOT; ELECTRON-SPIN; COMPUTATION; QUBIT; MANIPULATION;
D O I
10.1038/srep13255
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Universal quantum logic gates are important elements for a quantum computer. In contrast to previous constructions of qubit systems, we investigate the possibility of ququart systems (four-dimensional states) dependent on two DOFs of photon systems. We propose some useful one-parameter four-dimensional quantum transformations for the construction of universal ququart logic gates. The interface between the spin of a photon and an electron spin confined in a quantum dot embedded in a microcavity is applied to build universal ququart logic gates on the photon system with two freedoms. Our elementary controlled-ququart gates cost no more than 8 CNOT gates in a qubit system, which is far less than the 104 CNOT gates required for a general four-qubit logic gate. The ququart logic is also used to generate useful hyperentanglements and hyperentanglement-assisted quantum error-correcting code, which may be available in modern physical technology.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Towards cavity-QED experiments with silica microspheres
    Ecole Normale Superieure, Paris, France
    [J]. Mater Sci Eng B Solid State Adv Technol, 1-2 (53-58):
  • [32] Quantum thermometry based on a cavity-QED setup
    Xie, Dong
    Sun, Feng-Xiao
    Xu, Chunling
    [J]. PHYSICAL REVIEW A, 2020, 101 (06)
  • [33] Cavity-QED simulator of slow and fast scrambling
    Marino, J.
    Rey, A. M.
    [J]. PHYSICAL REVIEW A, 2019, 99 (05)
  • [34] Generation of hybrid four-qubit entangled decoherence-free states assisted by the cavity-QED system
    Zhou, You-Sheng
    Li, Xian
    Deng, Yun
    Li, Hui -Ran
    Luo, Ming -Xing
    [J]. OPTICS COMMUNICATIONS, 2016, 366 : 397 - 403
  • [35] Towards cavity-QED experiments with silica microspheres
    LefevreSeguin, V
    Haroche, S
    [J]. MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1997, 48 (1-2): : 53 - 58
  • [36] Photon antibunching in a cavity-QED system with two Rydberg–Rydberg interaction atoms
    Tong Huang
    Lei Tan
    [J]. The European Physical Journal D, 2021, 75
  • [37] Cavity-QED simulation of a quantum metamaterial with tunable disorder
    Mazhorin, Grigoriy S.
    Moskalenko, Ilya N.
    Besedin, Ilya S.
    Shapiro, Dmitriy S.
    Remizov, Sergey, V
    Pogosov, Walter, V
    Moskalev, Dmitry O.
    Pishchimova, Anastasia A.
    Dobronosova, Alina A.
    Rodionov, I. A.
    Ustinov, Alexey, V
    [J]. PHYSICAL REVIEW A, 2022, 105 (03)
  • [38] Effective generation of polarization-entangled photon pairs in a cavity-QED system
    Li, Pengbo
    Gu, Ying
    Gong, Qihuang
    Guo, Guangcan
    [J]. PHYSICS LETTERS A, 2008, 372 (38) : 5959 - 5963
  • [39] Emission spectrum and photon statistics in cavity-QED system under incoherent pumping
    Wei, Yan
    Liao, Zeyang
    Wang, Xue-hua
    [J]. Physics Letters, Section A: General, Atomic and Solid State Physics, 2024, 526
  • [40] Dispersive-coupling-based quantum Zeno effect in a cavity-QED system
    Xu, D. Z.
    Ai, Qing
    Sun, C. P.
    [J]. PHYSICAL REVIEW A, 2011, 83 (02):