SMURC: High-Dimension Small-Sample Multivariate Regression With Covariance Estimation

被引:6
|
作者
Bayar, Belhassen [1 ]
Bouaynaya, Nidhal [1 ]
Shterenberg, Roman [2 ]
机构
[1] Rowan Univ, Dept Elect & Comp Engn, Glassboro, NJ 08028 USA
[2] Univ Alabama Birmingham, Dept Math, Birmingham, AL 35233 USA
基金
美国国家科学基金会;
关键词
High-dimension low sample size; multivariate regression; maximum likelihood (ML); gene regulatory network; GENE REGULATORY NETWORKS; EXPRESSION; MODEL;
D O I
10.1109/JBHI.2016.2515993
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a high-dimension low samplesize multivariate regression problem that accounts for correlation of the response variables. The system is underdetermined as there are more parameters than samples. We show that the maximum likelihood approach with covariance estimation is senseless because the likelihood diverges. We subsequently propose a normalization of the likelihood function that guarantees convergence. We call this method small-sample multivariate regression with covariance (SMURC) estimation. We derive an optimization problem and its convex approximation to compute SMURC. Simulation results show that the proposed algorithm outperforms the regularized likelihood estimator with known covariance matrix and the sparse conditional Gaussian graphical model. We also apply SMURC to the inference of the wing-muscle gene network of the Drosophila melanogaster (fruit fly).
引用
收藏
页码:573 / 581
页数:9
相关论文
共 50 条
  • [21] Censored broken adaptive ridge regression in high-dimension
    Lee, Jeongjin
    Choi, Taehwa
    Choi, Sangbum
    [J]. COMPUTATIONAL STATISTICS, 2024, 39 (06) : 3457 - 3482
  • [22] A NOTE ON SMALL-SAMPLE MAXIMUM PROBABILITY ESTIMATION
    WEISS, L
    [J]. STATISTICS & PROBABILITY LETTERS, 1986, 4 (03) : 109 - 111
  • [23] Small-sample performance of robust methods in logistic regression
    Nargis, Suraiya
    Richardson, Alice
    [J]. CONTRIBUTIONS TO PROBABILITY AND STATISTICS: APPLICATIONS AND CHALLENGES, 2006, : 152 - +
  • [24] A SMALL-SAMPLE CHOICE OF THE TUNING PARAMETER IN RIDGE REGRESSION
    Boonstra, Philip S.
    Mukherjee, Bhramar
    Taylor, Jeremy M. G.
    [J]. STATISTICA SINICA, 2015, 25 (03) : 1185 - 1206
  • [25] Corrected small-sample estimation of the Bayes error
    Brun, M
    Sabbagh, D
    Kim, S
    Dougherty, ER
    [J]. BIOINFORMATICS, 2003, 19 (08) : 944 - 951
  • [26] Intrinsic Dimensionality Estimation of High-Dimension, Low Sample Size Data with D-Asymptotics
    Yata, Kazuyoshi
    Aoshima, Makoto
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (8-9) : 1511 - 1521
  • [27] ESTIMATION OF COVARIANCE MATRIX DISTANCES IN THE HIGH DIMENSION LOW SAMPLE SIZE REGIME
    Tiomoko, Malik
    Couillet, Romain
    [J]. 2019 IEEE 8TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2019), 2019, : 341 - 345
  • [28] Efficient estimation of the number of clusters for high-dimension data
    Kasapis, Spiridon
    Zhang, Geng
    Smereka, Jonathon M.
    Vlahopoulos, Nickolas
    [J]. JOURNAL OF DEFENSE MODELING AND SIMULATION-APPLICATIONS METHODOLOGY TECHNOLOGY-JDMS, 2023,
  • [29] Classification for high-dimension low-sample size data
    Shen, Liran
    Er, Meng Joo
    Yin, Qingbo
    [J]. PATTERN RECOGNITION, 2022, 130
  • [30] Classification for high-dimension low-sample size data
    Shen, Liran
    Er, Meng Joo
    Yin, Qingbo
    [J]. PATTERN RECOGNITION, 2022, 130