A SMALL-SAMPLE CHOICE OF THE TUNING PARAMETER IN RIDGE REGRESSION

被引:7
|
作者
Boonstra, Philip S. [1 ]
Mukherjee, Bhramar [1 ]
Taylor, Jeremy M. G. [1 ]
机构
[1] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Akaike's information criterion; cross-validation; generalized cross-validation; hyperpenalty; marginal likelihood; penalized likelihood; GENERALIZED CROSS-VALIDATION; SMOOTHING PARAMETER; MAXIMUM-LIKELIHOOD; SELECTION; INFORMATION; MODELS; LASSO; REGULARIZATION; PREDICTION; SHRINKAGE;
D O I
10.5705/ss.2013.284
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose new approaches for choosing the shrinkage parameter in ridge regression, a penalized likelihood method for regularizing linear regression coefficients, when the number of observations is small relative to the number of parameters. Existing methods may lead to extreme choices of this parameter, either shrinking the coefficients insufficiently or by too much. Within this "small-n, large-p" context, we suggest a correction to the common generalized cross-validation (GCV) method that preserves the asymptotic optimality of the original GCV. We also introduce the notion of a "hyperpenalty", which shrinks the shrinkage parameter itself, and make a specific recommendation regarding the choice of hyperpenalty that empirically works well in a broad range of scenarios. A simple algorithm jointly estimates the shrinkage parameter and regression coefficients in the hyperpenalized likelihood. In a comprehensive simulation study of small-sample scenarios and in the analysis of a gene-expression dataset, our proposed approaches offer superior prediction over nine other existing methods.
引用
收藏
页码:1185 / 1206
页数:22
相关论文
共 50 条
  • [1] SMALL-SAMPLE INTERVALS FOR REGRESSION
    TINGLEY, MA
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1992, 20 (03): : 271 - 280
  • [2] JOURNALISM AS CAREER CHOICE - A SMALL-SAMPLE STUDY
    FOSDICK, JA
    GREENBERG, BS
    [J]. JOURNALISM QUARTERLY, 1961, 38 (03): : 380 - 382
  • [3] Practical small-sample asymptotics for regression problems
    Strawderman, RL
    Casella, G
    Wells, MT
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (434) : 643 - 654
  • [4] Small-Sample Forecasting Regression or Arima Models?
    Tilak Abeysinghe
    Uditha Balasooriya
    Albert Tsui
    [J]. Journal of Quantitative Economics, 2003, 1 (1) : 103 - 113
  • [5] Ridge Regression in Prediction Problems: Automatic Choice of the Ridge Parameter
    Cule, Erika
    De Iorio, Maria
    [J]. GENETIC EPIDEMIOLOGY, 2013, 37 (07) : 704 - 714
  • [6] Small-sample performance of robust methods in logistic regression
    Nargis, Suraiya
    Richardson, Alice
    [J]. CONTRIBUTIONS TO PROBABILITY AND STATISTICS: APPLICATIONS AND CHALLENGES, 2006, : 152 - +
  • [7] SMALL-SAMPLE ESTIMATION FOR LOGNORMAL DISTRIBUTION WITH UNIT SHAPE PARAMETER
    GIBBONS, DI
    MCDONALD, GC
    [J]. IEEE TRANSACTIONS ON RELIABILITY, 1975, 24 (05) : 290 - 295
  • [8] ON SMALL-SAMPLE ESTIMATION
    BROWN, GW
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1947, 18 (04): : 582 - 585
  • [9] Small-sample techniques for comparing several logistic regression slopes to a standard
    Dasgupta, N
    Pascual, FG
    Spurrier, JD
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2001, 71 (02) : 141 - 161
  • [10] Improving the kernel regularized least squares method for small-sample regression
    Braga, Igor
    Monard, Maria Carolina
    [J]. NEUROCOMPUTING, 2015, 163 : 106 - 114