Electric field effect thermoelectric transport in individual silicon and germanium/silicon nanowires

被引:22
|
作者
Brovman, Yuri M. [1 ,2 ]
Small, Joshua P. [1 ,2 ]
Hu, Yongjie [3 ]
Fang, Ying [3 ]
Lieber, Charles M. [3 ]
Kim, Philip [1 ,2 ,4 ]
机构
[1] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[2] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA
[3] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[4] Harvard Univ, Dept Phys, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
DOPANT DISTRIBUTION; EFFECT TRANSISTORS; HOLE GAS; PERFORMANCE; HETEROSTRUCTURES;
D O I
10.1063/1.4953818
中图分类号
O59 [应用物理学];
学科分类号
摘要
We have simultaneously measured conductance and thermoelectric power (TEP) of individual silicon and germanium/silicon core/shell nanowires in the field effect transistor device configuration. As the applied gate voltage changes, the TEP shows distinctly different behaviors while the electrical conductance exhibits the turn-off, subthreshold, and saturation regimes, respectively. At room temperature, peak TEP value of similar to 300 mu V/K is observed in the subthreshold regime of the Si devices. The temperature dependence of the saturated TEP values is used to estimate the carrier doping of Si nanowires. Published by AIP Publishing.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Structural properties of silicon-germanium and germanium-silicon core-shell nanowires
    O'Rourke, Conn
    Mujahed, Shereif Y.
    Kumarasinghe, Chathurangi
    Miyazaki, Tsuyoshi
    Bowler, David R.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (46)
  • [32] The effect of phase heterogeneity on thermoelectric properties of nanostructured silicon germanium alloy
    [J]. Tayebi, L. (lobat.tayebi@okstate.edu), 1600, American Institute of Physics Inc. (114):
  • [33] Silicon and germanium nanowires: Growth, properties, and integration
    Picraux S.T.
    Dayeh S.A.
    Manandhar P.
    Perea D.E.
    Choi S.G.
    [J]. JOM, 2010, 62 (4) : 35 - 43
  • [34] Solution phase synthesis of silicon and germanium nanowires
    Geaney, Hugh
    Mullane, Emma
    Ryan, Kevin M.
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2013, 1 (33) : 4996 - 5007
  • [35] The effect of phase heterogeneity on thermoelectric properties of nanostructured silicon germanium alloy
    Zamanipour, Zahra
    Salahinejad, Erfan
    Norouzzadeh, Payam
    Krasinski, Jerzy S.
    Tayebi, Lobat
    Vashaee, Daryoosh
    [J]. JOURNAL OF APPLIED PHYSICS, 2013, 114 (02)
  • [36] Colloidal synthesis of silicon and germanium nanorods and nanowires
    Lu, Xiaotang
    Korgel, Brian
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [37] Nature of the band gap of silicon and germanium nanowires
    Harris, Clive
    O'Reilly, E. P.
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2006, 32 (1-2): : 341 - 345
  • [38] ROLE OF SURFACE RELIEF IN FIELD EFFECT IN GERMANIUM AND SILICON
    FROLOV, OS
    SNITKO, OV
    [J]. SOVIET PHYSICS SEMICONDUCTORS-USSR, 1969, 2 (08): : 956 - &
  • [39] Thermoelectric transport properties of individual bismuth nanowires
    Cronin, SB
    Lin, YM
    Rabin, O
    Black, MR
    Dresselhaus, G
    Dresselhaus, MS
    [J]. THERMOELECTRIC MATERIALS 2001-RESEARCH AND APPLICATIONS, 2001, 691 : 371 - 376
  • [40] Thermal transport in individual thermoelectric nanowires: a review
    Kim, W.
    [J]. MATERIALS RESEARCH INNOVATIONS, 2011, 15 (06) : 375 - 385