Electric field effect thermoelectric transport in individual silicon and germanium/silicon nanowires

被引:22
|
作者
Brovman, Yuri M. [1 ,2 ]
Small, Joshua P. [1 ,2 ]
Hu, Yongjie [3 ]
Fang, Ying [3 ]
Lieber, Charles M. [3 ]
Kim, Philip [1 ,2 ,4 ]
机构
[1] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[2] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA
[3] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[4] Harvard Univ, Dept Phys, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
DOPANT DISTRIBUTION; EFFECT TRANSISTORS; HOLE GAS; PERFORMANCE; HETEROSTRUCTURES;
D O I
10.1063/1.4953818
中图分类号
O59 [应用物理学];
学科分类号
摘要
We have simultaneously measured conductance and thermoelectric power (TEP) of individual silicon and germanium/silicon core/shell nanowires in the field effect transistor device configuration. As the applied gate voltage changes, the TEP shows distinctly different behaviors while the electrical conductance exhibits the turn-off, subthreshold, and saturation regimes, respectively. At room temperature, peak TEP value of similar to 300 mu V/K is observed in the subthreshold regime of the Si devices. The temperature dependence of the saturated TEP values is used to estimate the carrier doping of Si nanowires. Published by AIP Publishing.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] THERMOELECTRIC TRANSPORT IN SILICON GERMANIUM NANOCOMPOSITE
    Lee, Hohyun
    Vashaee, Daryoosh
    Wang, Xiaowei
    Joshi, Giri
    Zhu, Gaohua
    Wang, Dezhi
    Ren, Zhifeng
    Bux, Sabah
    Gogna, Pawan
    Fleurial, Jean-Pierre
    Tang, Ming Y.
    Dresselhaus, Mildred S.
    Chen, Gang
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, VOL 13, PTS A AND B, 2009, : 1151 - 1156
  • [2] Theoretical Analysis of High-field Hole Transport in Germanium and Silicon Nanowires
    Tanaka, Hajime
    Suda, Jun
    Kimoto, Tsunenobu
    [J]. 2016 IEEE SILICON NANOELECTRONICS WORKSHOP (SNW), 2016, : 192 - 193
  • [3] Field-Effect Modulation of Thermoelectric Properties in Multigated Silicon Nanowires
    Curtin, Benjamin M.
    Codecido, Emilio A.
    Kraemer, Stephan
    Bowers, John E.
    [J]. NANO LETTERS, 2013, 13 (11) : 5503 - 5508
  • [4] Thermal Transport in Rough Silicon Nanowires for Thermoelectric Applications
    Sinha, Sanjiv
    Budhaev, Bair
    Majumdar, Arun
    [J]. MATERIALS AND DEVICES FOR THERMAL-TO-ELECTRIC ENERGY CONVERSION, 2009, 1166 : 95 - 99
  • [5] Prediction of high zT in thermoelectric silicon nanowires with axial germanium heterostructures
    Shelley, M.
    Mostofi, A. A.
    [J]. EPL, 2011, 94 (06)
  • [6] Role of electric field on formation of silicon nanowires
    Cheng, SW
    Cheung, HF
    [J]. JOURNAL OF APPLIED PHYSICS, 2003, 94 (02) : 1190 - 1194
  • [7] Field-effect modulation of the thermoelectric characteristics of silicon nanowires on plastic substrates
    Choi, Jinyong
    Jeon, Youngin
    Cho, Kyoungah
    Kim, Sangsig
    [J]. NANOTECHNOLOGY, 2016, 27 (48)
  • [8] Hole Transport Mechanism in Silicon and Germanium Nanowire Field Effect Transistors
    Minari, Hideki
    Mori, Nobuya
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2010, 49 (04)
  • [9] INTERPRETATION OF FIELD EFFECT IN GERMANIUM AND SILICON
    FROLOV, OS
    [J]. SOVIET PHYSICS SEMICONDUCTORS-USSR, 1967, 1 (05): : 647 - &
  • [10] A comprehensive study of thermoelectric and transport properties of β-silicon carbide nanowires
    Valentin, L. A.
    Betancourt, J.
    Fonseca, L. F.
    Pettes, M. T.
    Shi, L.
    Soszynski, M.
    Huczko, A.
    [J]. JOURNAL OF APPLIED PHYSICS, 2013, 114 (18)