Prediction of high zT in thermoelectric silicon nanowires with axial germanium heterostructures

被引:24
|
作者
Shelley, M. [1 ]
Mostofi, A. A. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Thomas Young Ctr Theory & Simulat Mat, London SW7 2AZ, England
关键词
THERMAL-CONDUCTIVITY; LANDAUER FORMULA; TRANSPORT; CONDUCTANCE;
D O I
10.1209/0295-5075/94/67001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We calculate the thermoelectric figure of merit, zT = S(2)GT/(kappa(l) + kappa(e)), for p-type Si nanowires with axial Ge heterostructures using a combination of first-principles density-functional theory, interatomic potentials, and Landauer-Buttiker transport theory. We consider nanowires with up to 8400 atoms and twelve Ge axial heterostructures along their length. We find that introducing heterostructures always reduces S(2)G, and that our calculated increases in zT are predominantly driven by associated decreases in kappa(l). Of the systems considered, < 111 > nanowires with a regular distribution of Ge heterostructures have the highest figure of merit: zT - 3, an order of magnitude larger than the equivalent pristine nanowire. Even in the presence of realistic structural disorder, in the form of small variations in length of the heterostructures, zT remains several times larger than that of the pristine case, suggesting that axial heterostructuring is a promising route to high-zT thermoelectric nanowires. Copyright (C) EPLA, 2011
引用
收藏
页数:6
相关论文
共 50 条
  • [1] High thermoelectric figure of merit in silicon-germanium superlattice structured nanowires
    Shi, Lihong
    Jiang, Jinwu
    Zhang, Gang
    Li, Baowen
    [J]. APPLIED PHYSICS LETTERS, 2012, 101 (23)
  • [2] Heterostructures of germanium nanowires and germanium-silicon oxide nanotubes and growth mechanisms
    Huang, J. Q.
    Chiam, S. Y.
    Chim, W. K.
    Wong, L. M.
    Wang, S. J.
    [J]. NANOTECHNOLOGY, 2009, 20 (42)
  • [3] Electric field effect thermoelectric transport in individual silicon and germanium/silicon nanowires
    Brovman, Yuri M.
    Small, Joshua P.
    Hu, Yongjie
    Fang, Ying
    Lieber, Charles M.
    Kim, Philip
    [J]. JOURNAL OF APPLIED PHYSICS, 2016, 119 (23)
  • [4] Axial bandgap engineering in germanium-silicon heterostructured nanowires
    Dayeh, Shadi A.
    Dickerson, Robert M.
    Picraux, S. Thomas
    [J]. APPLIED PHYSICS LETTERS, 2011, 99 (11)
  • [5] Degradation of the ZT thermoelectric figure of merit in silicon when nanostructuring: From bulk to nanowires
    Raya-Moreno, Marti
    Rurali, Riccardo
    Cartoixa, Xavier
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2024, 225
  • [6] Degradation of the ZT thermoelectric figure of merit in silicon when nanostructuring: From bulk to nanowires
    Raya-Moreno, Martí
    Rurali, Riccardo
    Cartoixà, Xavier
    [J]. International Journal of Heat and Mass Transfer, 2024, 225
  • [7] From Crystalline Germanium-Silicon Axial Heterostructures to Silicon Nanowire-Nanotubes
    Ben-Ishai, Moshit
    Patolsky, Fernando
    [J]. NANO LETTERS, 2012, 12 (03) : 1121 - 1128
  • [8] SILICON GERMANIUM HETEROSTRUCTURES
    AHARONI, H
    [J]. VACUUM, 1983, 33 (04) : 250 - 250
  • [9] Formation of Compositionally Abrupt Axial Heterojunctions in Silicon-Germanium Nanowires
    Wen, C. -Y.
    Reuter, M. C.
    Bruley, J.
    Tersoff, J.
    Kodambaka, S.
    Stach, E. A.
    Ross, F. M.
    [J]. SCIENCE, 2009, 326 (5957) : 1247 - 1250
  • [10] Gating high mobility silicon-germanium heterostructures
    Griffin, N
    Paul, DJ
    Pepper, M
    Taylor, S
    Smith, JP
    Eccleston, W
    Fernandez, JM
    Joyce, BA
    [J]. MICROELECTRONIC ENGINEERING, 1997, 35 (1-4) : 309 - 312