Relationships between algebraic connectivity and vertex connectivity

被引:0
|
作者
Lucas, Clarianne Luciola de A. V. M. [1 ]
Del-Vecchio, Renata R. [2 ]
de Freitas, Maria Aguieiras A. [1 ,3 ]
do Nascimento, Joice Santos [4 ]
机构
[1] Univ Fed Rio de Janeiro, COPPE PEP, Rio De Janeiro, Brazil
[2] Univ Fed Fluminense, IME, Niteroi, RJ, Brazil
[3] Univ Fed Rio de Janeiro, Rio De Janeiro, Brazil
[4] Univ Estado Rio de Janeiro, IME, Rio De Janeiro, Brazil
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2022年 / 41卷 / 03期
关键词
Algebraic connectivity; Vertex connectivity; Laplacian integral graphs; Non-Laplacian integral graphs; LAPLACIAN; PRODUCT; GRAPHS;
D O I
10.1007/s40314-022-01786-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we investigate the relationship between algebraic and vertex connectivities of graphs, studying the difference between these two parameters. Cographs belong to the class of Laplacian integral graphs. In this paper, we prove that the algebraic and vertex connectivities of these graphs are equal. We also build infinite families of Laplacian and non-Laplacian integral graphs satisfying distinct relationships between these connectivities.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Relationships between algebraic connectivity and vertex connectivity
    Clarianne Luciola de A. V. M. Lucas
    Renata R. Del-Vecchio
    Maria Aguieiras A. de Freitas
    Joice Santos do Nascimento
    [J]. Computational and Applied Mathematics, 2022, 41
  • [2] On vertex connectivity and absolute algebraic connectivity for graphs
    Kirkland, S
    Pati, S
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2002, 50 (03): : 253 - 284
  • [3] On graphs with equal algebraic and vertex connectivity
    Kirkland, SJ
    Molitierno, JJ
    Neumann, M
    Shader, BL
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 341 : 45 - 56
  • [4] Algebraic Connectivity and Disjoint Vertex Subsets of Graphs
    Sun, Yan
    Li, Faxu
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [5] Algebraic connectivity for vertex-deleted subgraphs, and a notion of vertex centrality
    Kirkland, Steve
    [J]. DISCRETE MATHEMATICS, 2010, 310 (04) : 911 - 921
  • [6] On a Relation Between Randic Index and Algebraic Connectivity
    Li, Xueliang
    Shi, Yongtang
    Wang, Lusheng
    [J]. MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2012, 68 (03) : 843 - 849
  • [7] Edge connectivity vs vertex connectivity in chordal graphs
    Chandran, LS
    [J]. COMPUTING AND COMBINATORICS, 2001, 2108 : 384 - 389
  • [8] Augmenting Edge-Connectivity between Vertex Subsets
    Toshimasa Ishii
    Kazuhisa Makino
    [J]. Algorithmica, 2014, 69 : 130 - 147
  • [9] Augmenting Edge-Connectivity between Vertex Subsets
    Ishii, Toshimasa
    Makino, Kazuhisa
    [J]. ALGORITHMICA, 2014, 69 (01) : 130 - 147
  • [10] On algebraic connectivity augmentation
    Kirkland, Steve
    Oliveira, Carla Silva
    Justel, Claudia Marcela
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) : 2347 - 2356