On graphs with equal algebraic and vertex connectivity

被引:54
|
作者
Kirkland, SJ
Molitierno, JJ
Neumann, M [1 ]
Shader, BL
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[2] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
[3] Univ Wyoming, Dept Math, Laramie, WY 82071 USA
关键词
undirected graph; algebraic connectivity; vertex connectivity; Laplacian matrix;
D O I
10.1016/S0024-3795(01)00312-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be an undirected unweighted graph on n vertices, let L be its Laplacian matrix, and let L-# = (l(i,j)(#)) be the group inverse of L. It is known that for L(L-#) := (1/2)max(1less than or equal toi, jless than or equal ton) Sigma(s)(n)=1 \l(i,s)(#) - l(j,s)(#)\, the quantity 1/ L(L-#) is a lower bound on the algebraic connectivity a (G) of G, while the vertex connectivity of G, v(G), is an upper bound on a (G). We characterize the graphs G for which v(G) = a(G) and subsequently prove that if n greater than or equal to v(G)(2), then v(G) = a(G) holds if and only if 1/L(L-#) = a(G) = v(G). We close with an example showing that the equality 1/L(L-#) = a(G) does not necessarily imply that 1/L(L-#) = a(G) = v(G). (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:45 / 56
页数:12
相关论文
共 50 条
  • [1] On vertex connectivity and absolute algebraic connectivity for graphs
    Kirkland, S
    Pati, S
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2002, 50 (03): : 253 - 284
  • [2] Algebraic Connectivity and Disjoint Vertex Subsets of Graphs
    Sun, Yan
    Li, Faxu
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [3] Algebraic Connectivity and Disjoint Vertex Subsets of Graphs
    Sun, Yan
    Li, Faxu
    [J]. Mathematical Problems in Engineering, 2020, 2020
  • [4] A class of graphs with equal algebraic bipartiteness and vertex bipartiteness
    He, Jiaojiao
    [J]. PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE OF MATRICES AND OPERATORS (MAO 2012), 2012, : 111 - 114
  • [5] On graphs with algebraic connectivity equal to minimum edge density
    Fallat, SM
    Kirkland, S
    Pati, S
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 373 : 31 - 50
  • [6] Relationships between algebraic connectivity and vertex connectivity
    Clarianne Luciola de A. V. M. Lucas
    Renata R. Del-Vecchio
    Maria Aguieiras A. de Freitas
    Joice Santos do Nascimento
    [J]. Computational and Applied Mathematics, 2022, 41
  • [7] Relationships between algebraic connectivity and vertex connectivity
    Lucas, Clarianne Luciola de A. V. M.
    Del-Vecchio, Renata R.
    de Freitas, Maria Aguieiras A.
    do Nascimento, Joice Santos
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (03):
  • [8] ALGEBRAIC CONNECTIVITY OF GRAPHS
    FIEDLER, M
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 1973, 23 (02) : 298 - 305
  • [9] FINDING THE VERTEX CONNECTIVITY OF GRAPHS
    GALIL, Z
    [J]. SIAM JOURNAL ON COMPUTING, 1980, 9 (01) : 197 - 199
  • [10] On the vertex connectivity of Deza graphs
    Gavrilyuk, A. L.
    Goryainov, S. V.
    Kabanov, V. V.
    [J]. TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2013, 19 (03): : 94 - 103