Relationships between algebraic connectivity and vertex connectivity

被引:0
|
作者
Lucas, Clarianne Luciola de A. V. M. [1 ]
Del-Vecchio, Renata R. [2 ]
de Freitas, Maria Aguieiras A. [1 ,3 ]
do Nascimento, Joice Santos [4 ]
机构
[1] Univ Fed Rio de Janeiro, COPPE PEP, Rio De Janeiro, Brazil
[2] Univ Fed Fluminense, IME, Niteroi, RJ, Brazil
[3] Univ Fed Rio de Janeiro, Rio De Janeiro, Brazil
[4] Univ Estado Rio de Janeiro, IME, Rio De Janeiro, Brazil
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2022年 / 41卷 / 03期
关键词
Algebraic connectivity; Vertex connectivity; Laplacian integral graphs; Non-Laplacian integral graphs; LAPLACIAN; PRODUCT; GRAPHS;
D O I
10.1007/s40314-022-01786-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we investigate the relationship between algebraic and vertex connectivities of graphs, studying the difference between these two parameters. Cographs belong to the class of Laplacian integral graphs. In this paper, we prove that the algebraic and vertex connectivities of these graphs are equal. We also build infinite families of Laplacian and non-Laplacian integral graphs satisfying distinct relationships between these connectivities.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] On shredders and vertex connectivity augmentation
    Liberman, Gilad
    Nutov, Zeev
    [J]. JOURNAL OF DISCRETE ALGORITHMS, 2007, 5 (01) : 91 - 101
  • [22] On the vertex connectivity of Deza graphs
    A. L. Gavrilyuk
    S. V. Goryainov
    V. V. Kabanov
    [J]. Proceedings of the Steklov Institute of Mathematics, 2014, 285 : 68 - 77
  • [23] Vertex downgrading to minimize connectivity
    Aissi, Hassene
    Chen, Da Qi
    Ravi, R.
    [J]. MATHEMATICAL PROGRAMMING, 2023, 199 (1-2) : 215 - 249
  • [24] On the vertex connectivity of Deza graphs
    Gavrilyuk, A. L.
    Goryainov, S. V.
    Kabanov, V. V.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 285 : S68 - S77
  • [25] ON THE VERTEX CONNECTIVITY POLYNOMIAL OF GRAPHS
    Priya, K.
    Kumar, Anil, V
    [J]. ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2021, 26 (02): : 133 - 147
  • [26] The Price of Connectivity for Vertex Cover
    Camby, Eglantine
    Cardinal, Jean
    Fiorini, Samuel
    Schaudt, Oliver
    [J]. DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2014, 16 (01): : 207 - 223
  • [27] Network Design for Vertex Connectivity
    Chakraborty, Tanmoy
    Chuzhoy, Julia
    Khanna, Sanjeev
    [J]. STOC'08: PROCEEDINGS OF THE 2008 ACM INTERNATIONAL SYMPOSIUM ON THEORY OF COMPUTING, 2008, : 167 - 176
  • [28] Vertex downgrading to minimize connectivity
    Hassene Aissi
    Da Qi Chen
    R. Ravi
    [J]. Mathematical Programming, 2023, 199 : 215 - 249
  • [29] Relationships between different measures of brain connectivity
    Yakushev, I.
    Lizarraga, A.
    Ripp, I.
    Sala, A.
    Weber, W.
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (SUPPL 1) : S294 - S295
  • [30] A static 2-approximation algorithm for vertex connectivity and incremental approximation algorithms for edge and vertex connectivity
    Henzinger, MR
    [J]. JOURNAL OF ALGORITHMS, 1997, 24 (01) : 194 - 220