Quantum Mechanical Confinement in the Fin Electron-Hole Bilayer Tunnel Field-Effect Transistor

被引:6
|
作者
Padilla, Jose L. [1 ,2 ]
Alper, Cem [1 ]
Gamiz, Francisco [2 ]
Ionescu, Adrian Mihai [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Nanoelect Devices Lab, CH-1015 Lausanne, Switzerland
[2] Univ Granada, Dept Elect & Tecnol Comp, E-18071 Granada, Spain
关键词
Asymmetric layouts; band-to-band tunneling (BTBT); fin electron-hole bilayer tunnel field-effect transistor (EHBTFET); quantum confinement; IMPACT; LINE; PERFORMANCE; SIMULATION; VOLTAGE; TFET;
D O I
10.1109/TED.2016.2574893
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Quantum mechanical confinement in electron-hole bilayer tunnel field-effect transistors (EHBTFETs) affects in a substantial way the band-to-band tunneling (BTBT) mechanism that constitutes their operating principle. Field-induced quantization is known to set off effective bandgap widening phenomena-with the subsequent BTBT probability reduction that it entails-and to give rise to harmful parasitic tunneling processes. Both of these effects degrade the potential steep switching behavior of bilayer TFETs. In this paper, we show that the novel FinEHBTFET proves to be a promising structure for its scalability potential and propose a solution to alleviate the impact on it of quantum confinement, as well as to suppress the parasitic tunneling processes that show up when quantization is considered. Moreover, we demonstrate for different fin materials that the utilization of asymmetric configurations delaying the formation of electron inversion layers allows us to boost ION levels.
引用
收藏
页码:3320 / 3326
页数:7
相关论文
共 50 条
  • [1] A Novel Fin Electron-Hole Bilayer Tunnel Field-Effect Transistor
    Zhu, Zhengyong
    Zhu, Huilong
    Xu, Miao
    Zhong, Jian
    Zhao, Chao
    Chen, Dapeng
    Ye, Tianchun
    [J]. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2014, 13 (06) : 1133 - 1137
  • [2] Assessment of field-induced quantum confinement in heterogate germanium electron-hole bilayer tunnel field-effect transistor
    Padilla, J. L.
    Alper, C.
    Gamiz, F.
    Ionescu, A. M.
    [J]. APPLIED PHYSICS LETTERS, 2014, 105 (08)
  • [3] Engineering the Electron-Hole Bilayer Tunneling Field-Effect Transistor
    Agarwal, Sapan
    Teherani, James T.
    Hoyt, Judy L.
    Antoniadis, Dimitri A.
    Yablonovitch, Eli
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (05) : 1599 - 1606
  • [4] Assessment of pseudo-bilayer structures in the heterogate germanium electron-hole bilayer tunnel field-effect transistor
    Padilla, J. L.
    Alper, C.
    Medina-Bailon, C.
    Gamiz, F.
    Ionescu, A. M.
    [J]. APPLIED PHYSICS LETTERS, 2015, 106 (26)
  • [5] Confinement-induced InAs/GaSb heterojunction electron-hole bilayer tunneling field-effect transistor
    Padilla, J. L.
    Medina-Bailon, C.
    Alper, C.
    Gamiz, F.
    Ionescu, A. M.
    [J]. APPLIED PHYSICS LETTERS, 2018, 112 (18)
  • [6] Design Optimization of Nanotube Tunnel Field-Effect Transistor with Bias-Induced Electron-Hole Bilayer
    Xueke Wang
    Yabin Sun
    Ziyu Liu
    Yun Liu
    Xiaojin Li
    Yanling Shi
    [J]. Silicon, 2022, 14 : 9071 - 9082
  • [7] Design Optimization of Nanotube Tunnel Field-Effect Transistor with Bias-Induced Electron-Hole Bilayer
    Wang, Xueke
    Sun, Yabin
    Liu, Ziyu
    Liu, Yun
    Li, Xiaojin
    Shi, Yanling
    [J]. SILICON, 2022, 14 (14) : 9071 - 9082
  • [8] Modeling of InAs/Si Electron-Hole Bilayer Tunnel Field Effect Transistor
    Wisniewski, Piotr
    Majkusiak, Bogdan
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2022, 98 (02): : 133 - 135
  • [9] Band-to-band tunneling distance analysis in the heterogate electron-hole bilayer tunnel field-effect transistor
    Padilla, J. L.
    Palomares, A.
    Alper, C.
    Gamiz, F.
    Ionescu, A. M.
    [J]. JOURNAL OF APPLIED PHYSICS, 2016, 119 (04)
  • [10] Single-event-transient effect in nanotube tunnel field-effect transistor with bias-induced electron-hole bilayer
    Wang, Xue-Ke
    Sun, Ya-Bin
    Liu, Zi-Yu
    Liu, Yun
    Li, Xiao-Jin
    Shi, Yan-Ling
    [J]. CHINESE PHYSICS B, 2023, 32 (06)