Smoothness of first passage time distributions and a new integral equation for the first passage time density of continuous Markov processes

被引:14
|
作者
Lehmann, A [1 ]
机构
[1] Otto Von Guericke Univ, Inst Stat Math, Fac Math, D-39016 Magdeburg, Germany
关键词
first passage time density; moving boundaries; continuous Markov processes; Brownian motion; Ornstein-Uhlenbeck process; Volterra integral equation;
D O I
10.1017/S0001867800011952
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X be a one-dimensional strong Markov process with continuous sample paths. Using Volterra-Stieltjes integral equation techniques we investigate Holder continuity and differentiability of first passage time distributions of X with respect to continuous lower and upper moving boundaries. Under mild assumptions on the transition function of X we prove the existence of a continuous first passage time density to one-sided differentiable moving boundaries and derive a new integral equation for this density. We apply our results to Brownian motion and its nonrandom Markovian transforms, in particular to the Ornstein-Uhlenbeck process.
引用
收藏
页码:869 / 887
页数:19
相关论文
共 50 条
  • [1] SEMIORDERING OF PROBABILITIES OF FIRST PASSAGE TIME OF MARKOV PROCESSES
    KALMYKOV, GI
    [J]. THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1969, 14 (04): : 704 - &
  • [2] FIRST PASSAGE RISK PROBABILITY OPTIMALITY FOR CONTINUOUS TIME MARKOV DECISION PROCESSES
    Huo, Haifeng
    Wen, Xian
    [J]. KYBERNETIKA, 2019, 55 (01) : 114 - 133
  • [3] Exponentiality of First Passage Times of Continuous Time Markov Chains
    Romain Bourget
    Loïc Chaumont
    Natalia Sapoukhina
    [J]. Acta Applicandae Mathematicae, 2014, 131 : 197 - 212
  • [4] Exponentiality of First Passage Times of Continuous Time Markov Chains
    Bourget, Romain
    Chaumont, Loic
    Sapoukhina, Natalia
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2014, 131 (01) : 197 - 212
  • [5] MOMENTS OF FIRST PASSAGE TIME PROBLEM FOR MARKOV-PROCESSES
    TIKHONOV, VI
    DORONIN, VI
    SATOSIN, VA
    [J]. RADIOTEKHNIKA I ELEKTRONIKA, 1974, 19 (01): : 190 - 193
  • [6] FIRST PASSAGE TIME AND EXTREMUM PROPERTIES OF MARKOV AND INDEPENDENT PROCESSES
    LINDENBERG, K
    SHULER, KE
    FREEMAN, J
    LIE, TJ
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1975, 12 (03) : 217 - 251
  • [7] First-passage time statistics of Markov gamma processes
    Ramos-Alarcon, Fernando
    Kontorovich, Valeri
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2013, 350 (07): : 1686 - 1696
  • [8] Asymptotic behaviour of first passage time distributions for Levy processes
    Doney, R. A.
    Rivero, V.
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2013, 157 (1-2) : 1 - 45
  • [9] A NOTE ON THE VOLTERRA INTEGRAL-EQUATION FOR THE FIRST-PASSAGE-TIME PROBABILITY DENSITY
    JAIMEZ, RG
    ROMAN, PR
    RUIZ, FT
    [J]. JOURNAL OF APPLIED PROBABILITY, 1995, 32 (03) : 635 - 648
  • [10] INTEGRAL LIMIT THEOREMS FOR THE FIRST PASSAGE TIME OF PARABOLAS BY MARKOV CHAINS
    Rahimov, Fada H.
    Abdurakhmanov, Vugar A.
    Azizov, Fuad Dj.
    [J]. PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2009, 31 (39): : 139 - 144