Exponentiality of First Passage Times of Continuous Time Markov Chains

被引:0
|
作者
Romain Bourget
Loïc Chaumont
Natalia Sapoukhina
机构
[1] UMR1345 Institut de Recherche en Horticulture et Semences—IRHS,INRA
[2] UMR1345 Institut de Recherche en Horticulture et Semences—IRHS,AgroCampus
[3] UMR1345 Institut de Recherche en Horticulture et Semences—IRHS,Ouest
[4] Université d’Angers,Université d’Angers
来源
关键词
First passage time; Exponential decay; Quasi stationary distribution; 92D25; 60J28;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(X,\mathbb{P}_{x})$\end{document} be a continuous time Markov chain with finite or countable state space S and let T be its first passage time in a subset D of S. It is well known that if μ is a quasi-stationary distribution relative to T, then this time is exponentially distributed under \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {P}_{\mu}$\end{document}. However, quasi-stationarity is not a necessary condition. In this paper, we determine more general conditions on an initial distribution μ for T to be exponentially distributed under \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{P}_{\mu}$\end{document}. We show in addition how quasi-stationary distributions can be expressed in terms of any initial law which makes the distribution of T exponential. We also study two examples in branching processes where exponentiality does imply quasi-stationarity.
引用
收藏
页码:197 / 212
页数:15
相关论文
共 50 条
  • [1] Exponentiality of First Passage Times of Continuous Time Markov Chains
    Bourget, Romain
    Chaumont, Loic
    Sapoukhina, Natalia
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2014, 131 (01) : 197 - 212
  • [2] Bounding Mean First Passage Times in Population Continuous-Time Markov Chains
    Backenkoehler, Michael
    Bortolussi, Luca
    Wolf, Verena
    [J]. QUANTITATIVE EVALUATION OF SYSTEMS (QEST 2020), 2020, 12289 : 155 - 174
  • [4] The computation of the mean first passage times for Markov chains
    Hunter, Jeffrey J.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 549 : 100 - 122
  • [5] First passage time interdiction in Markov chains
    Daemi, Niloufar
    Borrero, Juan S.
    Balasundaram, Balabhaskar
    [J]. OPERATIONS RESEARCH LETTERS, 2024, 54
  • [6] Higher order ergodic Markov chains and first passage times
    Han, Lixing
    Wang, Kelun
    Xu, Jianhong
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21): : 6772 - 6779
  • [7] Explosion, implosion, and moments of passage times for continuous-time Markov chains: A semimartingale approach
    Menshikov, Mikhail
    Petritis, Dimitri
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (07) : 2388 - 2414
  • [8] Sojourn and passage times in Markov chains
    Nunes, C
    Pacheco, A
    [J]. MATRIX-ANALYTIC METHODS:THEORY AND APPLICATIONS, 2002, : 311 - 332
  • [9] Simple procedures for finding mean first passage times in Markov chains
    Hunter, Jeffrey J.
    [J]. ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2007, 24 (06) : 813 - 829
  • [10] Thermodynamic uncertainty relation for first-passage times on Markov chains
    Pal, Arnab
    Reuveni, Shlomi
    Rahav, Saar
    [J]. PHYSICAL REVIEW RESEARCH, 2021, 3 (03):