Exponentiality of First Passage Times of Continuous Time Markov Chains

被引:0
|
作者
Romain Bourget
Loïc Chaumont
Natalia Sapoukhina
机构
[1] UMR1345 Institut de Recherche en Horticulture et Semences—IRHS,INRA
[2] UMR1345 Institut de Recherche en Horticulture et Semences—IRHS,AgroCampus
[3] UMR1345 Institut de Recherche en Horticulture et Semences—IRHS,Ouest
[4] Université d’Angers,Université d’Angers
来源
关键词
First passage time; Exponential decay; Quasi stationary distribution; 92D25; 60J28;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(X,\mathbb{P}_{x})$\end{document} be a continuous time Markov chain with finite or countable state space S and let T be its first passage time in a subset D of S. It is well known that if μ is a quasi-stationary distribution relative to T, then this time is exponentially distributed under \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {P}_{\mu}$\end{document}. However, quasi-stationarity is not a necessary condition. In this paper, we determine more general conditions on an initial distribution μ for T to be exponentially distributed under \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{P}_{\mu}$\end{document}. We show in addition how quasi-stationary distributions can be expressed in terms of any initial law which makes the distribution of T exponential. We also study two examples in branching processes where exponentiality does imply quasi-stationarity.
引用
收藏
页码:197 / 212
页数:15
相关论文
共 50 条
  • [31] On first-passage times in increasing Markov processes
    PerezOcon, R
    GamizPerez, ML
    [J]. STATISTICS & PROBABILITY LETTERS, 1996, 26 (03) : 199 - 203
  • [32] First passage times for Markov renewal processes and applications
    徐光煇
    袁学明
    李泉林
    [J]. Science China Mathematics, 2000, (12) : 1238 - 1249
  • [33] First passage times for Markov renewal processes and applications
    Xu, Guanghui
    Yuan, Xueming
    Li, Quanlin
    [J]. 2000, Science in China Press (43):
  • [34] First passage times for Markov renewal processes and applications
    Guanghui Xu
    Xueming Yuan
    Quanlin Li
    [J]. Science in China Series A: Mathematics, 2000, 43 : 1238 - 1249
  • [35] First passage times for Markov renewal processes and applications
    徐光煇
    袁学明
    李泉林
    [J]. ScienceinChina,Ser.A., 2000, Ser.A.2000 (12) - 1249
  • [36] On State Occupancies, First Passage Times and Duration in Non-Homogeneous Semi-Markov Chains
    Georgiou, Andreas C.
    Papadopoulou, Alexandra
    Kolias, Pavlos
    Palikrousis, Haris
    Farmakioti, Evanthia
    [J]. MATHEMATICS, 2021, 9 (15)
  • [37] Variances of first passage times in a Markov chain with applications to mixing times
    Hunter, Jeffrey J.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (5-6) : 1135 - 1162
  • [38] Ever-reaching probabilities and mean first passage times of higher order ergodic Markov chains
    Han, Lixing
    Xu, Jianhong
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (01): : 59 - 75
  • [39] Hitting times, number of jumps, and occupation times for continuous-time finite state Markov chains
    Colwell, David B.
    [J]. STATISTICS & PROBABILITY LETTERS, 2023, 195
  • [40] Asymptotic variance of passage time estimators in Markov chains
    Zazanis, Michael A.
    [J]. PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2007, 21 (02) : 217 - 234