Prostate cancer diagnosis using quantitative phase imaging and machine learning

被引:4
|
作者
Nguyen, Tan H. [1 ,2 ]
Sridharan, Shamira [1 ]
Marcias, Virgilia [3 ]
Balla, Andre K. [3 ]
Do, Minh N. [2 ]
Popescu, Gabriel [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Beckman Inst Adv Sci & Technol, Quantitat Phase Imaging Lab, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Elect & Comp Engn, Coordinated Sci Lab, Computat Imaging Grp, Urbana, IL 61801 USA
[3] Univ Chicago, Dept Pathol, Chicago, IL 60637 USA
来源
QUANTITATIVE PHASE IMAGING | 2015年 / 9336卷
关键词
automatic diagnosis; Quantitative Phase Imaging; texton analysis; prostate cancer; MICROSCOPY;
D O I
10.1117/12.2080321
中图分类号
TH742 [显微镜];
学科分类号
摘要
We report, for the first time, the use of Quantitative Phase Imaging (QPI) images to perform automatic prostate cancer diagnosis. A machine learning algorithm is implemented to learn textural behaviors of prostate samples imaged under QPI and produce labeled maps of different regions for testing biopsies (e.g. gland, stroma, lumen etc.). From these maps, morphological and textural features are calculated to predict outcomes of the testing samples. Current performance is reported on a dataset of more than 300 cores of various diagnosis results.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Machine Learning and Cancer Diagnosis
    Adamson, Adewole S.
    SCIENTIST, 2021, 35 (02): : 14 - 15
  • [42] Noninvasive discrimination of prostate healthy and cancer cells by quantitative phase and Raman imaging
    Khadem, Hossein
    Ferrara, Maria Antonietta
    Mangini, Maria
    Luini, Alberto
    Coppola, Giuseppe
    De Luca, Anna Chiara
    BIOMEDICAL SPECTROSCOPY, MICROSCOPY, AND IMAGING III, 2024, 13006
  • [43] Identification and Staging of B-Cell Acute Lymphoblastic Leukemia Using Quantitative Phase Imaging and Machine Learning
    Ayyappan, Vinay
    Chang, Alex
    Zhang, Chi
    Paidi, Santosh Kumar
    Bordett, Rosalie
    Liang, Tiffany
    Barman, Ishan
    Pandey, Rishikesh
    ACS SENSORS, 2020, 5 (10): : 3281 - 3289
  • [44] Non invasive live cell cycle monitoring using quantitative phase imaging and proximal machine learning methods
    Pognonec, Philippe
    Barlaud, Michel
    Wattellier, Benoit
    Pourcher, Thierry
    Zhou, Yuxiang
    Aknoun, Sherazade
    Yonnet, Manuel
    Antonini, Marc
    2019 IEEE 32ND INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2019, : 483 - 488
  • [45] Using Machine Learning Methods in Early Diagnosis of Breast Cancer
    Erkal, Begum
    Ayyildiz, Tulin Ercelebi
    TIP TEKNOLOJILERI KONGRESI (TIPTEKNO'21), 2021,
  • [46] Proposed approach for breast cancer diagnosis using machine learning
    Saoud, Hajar
    Ghadi, Abderrahim
    Ghailani, Mohamed
    4TH INTERNATIONAL CONFERENCE ON SMART CITY APPLICATIONS (SCA' 19), 2019,
  • [47] Machine Learning Predicts Outcomes of Phase III Clinical Trials for Prostate Cancer
    Beacher, Felix D.
    Mujica-Parodi, Lilianne R.
    Gupta, Shreyash
    Ancora, Leonardo A.
    ALGORITHMS, 2021, 14 (05)
  • [48] MACHINE LEARNING APPLICATION IN PROSTATE CANCER DIAGNOSIS ACCORDING TO PROSTATE-SPECIFIC ANTIGEN LEVELS AND PROSTATE CANCER GENE 3 SCORE
    De Luca, Stefano
    Passera, Roberto
    Fiori, Cristian
    Bollito, Enrico
    Checcucci, Enrico
    Amparore, Daniele
    Volpi, Gabriele
    De Cillis, Sabrina
    Piana, Alberto
    Piramide, Federico
    Sica, Michele
    Verri, Paolo
    Granato, Stefano
    Cattaneo, Giovanni
    Manfredi, Matteo
    Randone, Donato Franco
    Montorsi, Francesco
    Porpiglia, Francesco
    ANTICANCER RESEARCH, 2021, 41 (10) : 5273 - 5274
  • [49] PANCREATIC CANCER DETECTION USING HYPERSPECTRAL IMAGING AND MACHINE LEARNING
    Galvao Filho, Arlindo R.
    Wastowski, Isabela Jube
    Moreira, Marise A. R.
    Cysneiros, Maria A. de P. C.
    Coelho, Clarimar Jose
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2870 - 2874
  • [50] Age-specific survival in prostate cancer using machine learning
    Doja, M. N.
    Kaur, Ishleen
    Ahmad, Tanvir
    DATA TECHNOLOGIES AND APPLICATIONS, 2020, 54 (02) : 215 - 234