Prostate cancer diagnosis using quantitative phase imaging and machine learning

被引:4
|
作者
Nguyen, Tan H. [1 ,2 ]
Sridharan, Shamira [1 ]
Marcias, Virgilia [3 ]
Balla, Andre K. [3 ]
Do, Minh N. [2 ]
Popescu, Gabriel [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Beckman Inst Adv Sci & Technol, Quantitat Phase Imaging Lab, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Elect & Comp Engn, Coordinated Sci Lab, Computat Imaging Grp, Urbana, IL 61801 USA
[3] Univ Chicago, Dept Pathol, Chicago, IL 60637 USA
来源
QUANTITATIVE PHASE IMAGING | 2015年 / 9336卷
关键词
automatic diagnosis; Quantitative Phase Imaging; texton analysis; prostate cancer; MICROSCOPY;
D O I
10.1117/12.2080321
中图分类号
TH742 [显微镜];
学科分类号
摘要
We report, for the first time, the use of Quantitative Phase Imaging (QPI) images to perform automatic prostate cancer diagnosis. A machine learning algorithm is implemented to learn textural behaviors of prostate samples imaged under QPI and produce labeled maps of different regions for testing biopsies (e.g. gland, stroma, lumen etc.). From these maps, morphological and textural features are calculated to predict outcomes of the testing samples. Current performance is reported on a dataset of more than 300 cores of various diagnosis results.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Composition Counts: A Machine Learning View on Immunothrombosis using Quantitative Phase Imaging
    Fresacher, David
    Roehrl, Stefan
    Klenk, Christian
    Erber, Johanna
    Irl, Hedwig
    Heim, Dominik
    Lengl, Manuel
    Schumann, Simon
    Knopp, Martin
    Schlegel, Martin
    Rasch, Sebastian
    Hayden, Oliver
    Diepold, Klaus
    MACHINE LEARNING FOR HEALTHCARE CONFERENCE, VOL 219, 2023, 219
  • [12] Multispectral imaging and machine learning for automated cancer diagnosis
    Al Maadeed, Somaya
    Kunhoth, Suchithra
    Bouridane, Ahmed
    Peyret, Remy
    2017 13TH INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING CONFERENCE (IWCMC), 2017, : 1740 - 1744
  • [13] Prediction of prostate cancer recurrence using quantitative phase imaging: Validation on a general population
    Sridharan, Shamira
    Macias, Virgilia
    Tangella, Krishnarao
    Melamed, Jonathan
    Dube, Emily
    Kong, Max Xiangtian
    Kajdacsy-Balla, Andre
    Popescu, Gabriel
    SCIENTIFIC REPORTS, 2016, 6
  • [14] Prediction of prostate cancer recurrence using quantitative phase imaging: Validation on a general population
    Shamira Sridharan
    Virgilia Macias
    Krishnarao Tangella
    Jonathan Melamed
    Emily Dube
    Max Xiangtian Kong
    André Kajdacsy-Balla
    Gabriel Popescu
    Scientific Reports, 6
  • [15] Machine learning and multiparametric MRI for early diagnosis of prostate cancer
    Bonekamp, D.
    Schlemmer, H. -P.
    UROLOGE, 2021, 60 (05): : 576 - 591
  • [16] Machine learning applications in prostate cancer magnetic resonance imaging
    Cuocolo, Renato
    Cipullo, Maria Brunella
    Stanzione, Arnaldo
    Ugga, Lorenzo
    Romeo, Valeria
    Radice, Leonardo
    Brunetti, Arturo
    Imbriaco, Massimo
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2019, 3 (01)
  • [17] Machine learning applications in prostate cancer magnetic resonance imaging
    Renato Cuocolo
    Maria Brunella Cipullo
    Arnaldo Stanzione
    Lorenzo Ugga
    Valeria Romeo
    Leonardo Radice
    Arturo Brunetti
    Massimo Imbriaco
    European Radiology Experimental, 3
  • [18] Thermal infrared imaging based breast cancer diagnosis using machine learning techniques
    Yadav, Samir S.
    Jadhav, Shivajirao M.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (10) : 13139 - 13157
  • [19] Improving blood cancer diagnosis through morphological insights using quantitative phase imaging
    Khalid, Ramna
    Javed, Isma
    Cabrera, Humberto
    Dashtdar, Masoomed
    Mehmood, Muhammad Qasim
    Zubair, Muhammad
    OPTICS, PHOTONICS, AND DIGITAL TECHNOLOGIES FOR IMAGING APPLICATIONS VIII, 2024, 12998
  • [20] Thermal infrared imaging based breast cancer diagnosis using machine learning techniques
    Samir S. Yadav
    Shivajirao M. Jadhav
    Multimedia Tools and Applications, 2022, 81 : 13139 - 13157