Prostate cancer diagnosis using quantitative phase imaging and machine learning

被引:4
|
作者
Nguyen, Tan H. [1 ,2 ]
Sridharan, Shamira [1 ]
Marcias, Virgilia [3 ]
Balla, Andre K. [3 ]
Do, Minh N. [2 ]
Popescu, Gabriel [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Beckman Inst Adv Sci & Technol, Quantitat Phase Imaging Lab, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Elect & Comp Engn, Coordinated Sci Lab, Computat Imaging Grp, Urbana, IL 61801 USA
[3] Univ Chicago, Dept Pathol, Chicago, IL 60637 USA
来源
QUANTITATIVE PHASE IMAGING | 2015年 / 9336卷
关键词
automatic diagnosis; Quantitative Phase Imaging; texton analysis; prostate cancer; MICROSCOPY;
D O I
10.1117/12.2080321
中图分类号
TH742 [显微镜];
学科分类号
摘要
We report, for the first time, the use of Quantitative Phase Imaging (QPI) images to perform automatic prostate cancer diagnosis. A machine learning algorithm is implemented to learn textural behaviors of prostate samples imaged under QPI and produce labeled maps of different regions for testing biopsies (e.g. gland, stroma, lumen etc.). From these maps, morphological and textural features are calculated to predict outcomes of the testing samples. Current performance is reported on a dataset of more than 300 cores of various diagnosis results.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Automatic Diagnosis of Prostate Cancer Using Quantitative Phase Imaging and Machine Learning Algorithms
    Tan Nguyen
    Sridharan, Shamira
    Macias, Virgilia
    Tangella, Krishnarao
    Kajdacsy-Balla, Andre
    Minh Do
    Popescu, Gabriel
    MODERN PATHOLOGY, 2015, 28 : 521A - 522A
  • [2] Automatic Diagnosis of Prostate Cancer Using Quantitative Phase Imaging and Machine Learning Algorithms
    Nguyen, Tan
    Sridharan, Shamira
    Macias, Virgilia
    Tangella, Krishnarao
    Kajdacsy-Balla, Andre
    Do, Minh
    Popescu, Gabriel
    LABORATORY INVESTIGATION, 2015, 95 : 521A - 522A
  • [3] Automatic Gleason grading of prostate cancer using quantitative phase imaging and machine learning
    Nguyen, Tan H.
    Sridharan, Shamira
    Macias, Virgilia
    Kajdacsy-Balla, Andre
    Melamed, Jonathan
    Do, Minh N.
    Popescu, Gabriel
    JOURNAL OF BIOMEDICAL OPTICS, 2017, 22 (03)
  • [4] Pebrine diagnosis using quantitative phase imaging and machine learning
    Prasobhkumar, P. P.
    Venukumar, Aravind
    Francis, C. R.
    Gorthi, Sai Siva
    JOURNAL OF BIOPHOTONICS, 2021, 14 (08)
  • [5] Quantitative scoring of epithelial and mesenchymal qualities of cancer cells using machine learning and quantitative phase imaging
    Lam, Van K.
    Thanh Nguyen
    Vy Bui
    Byung Min Chung
    Chang, Lin-Ching
    Nehmetallah, George
    Raub, Christopher B.
    JOURNAL OF BIOMEDICAL OPTICS, 2020, 25 (02)
  • [6] Prediction of Prostate Cancer Recurrence Using Quantitative Phase Imaging
    Shamira Sridharan
    Virgilia Macias
    Krishnarao Tangella
    André Kajdacsy-Balla
    Gabriel Popescu
    Scientific Reports, 5
  • [7] Prediction of Prostate Cancer Recurrence Using Quantitative Phase Imaging
    Sridharan, Shamira
    Macias, Virgilia
    Tangella, Krishnarao
    Kajdacsy-Balla, Andre
    Popescu, Gabriel
    SCIENTIFIC REPORTS, 2015, 5
  • [8] Diagnosis of breast cancer biopsies using quantitative phase imaging
    Majeed, Hassaan
    Kandel, Mikhail E.
    Han, Kevin
    Luo, Zelun
    Macias, Virgilia
    Tangella, Krishnarao
    Balla, Andre
    Popescu, Gabriel
    QUANTITATIVE PHASE IMAGING, 2015, 9336
  • [9] Diagnosis of prostate cancer in a Chinese population by using machine learning methods
    Wang, Guanjin
    Teoh, Jeremy Yuen-Chun
    Choi, Kup-Sze
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 3971 - 3974
  • [10] Quantitative digital image analysis and machine learning for staging of prostate cancer at diagnosis.
    Huang, Fangjin
    Ing, Nathan
    Eric, Miller
    Salemi, Hootan
    Lewis, Michael
    Garraway, Isla
    Gertych, Arkadiusz
    Knudsen, Beatrice
    CANCER RESEARCH, 2018, 78 (16) : 130 - 130