Diffused-interface Rayleigh-Taylor instability with a nonlinear equation of state

被引:11
|
作者
Olsthoorn, Jason [1 ]
Tedford, Edmund W. [1 ]
Lawrence, Gregory A. [1 ]
机构
[1] Univ British Columbia, Dept Civil Engn, 6250 Appl Sci Ln 2002, Vancouver, BC V6T 1Z4, Canada
来源
PHYSICAL REVIEW FLUIDS | 2019年 / 4卷 / 09期
基金
加拿大自然科学与工程研究理事会;
关键词
AVAILABLE POTENTIAL-ENERGY;
D O I
10.1103/PhysRevFluids.4.094501
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Thermal convection in inland waters often occurs where the equation of state is highly nonlinear with temperature. We investigate the impact of this nonlinearity on the evolution of the Rayleigh-Taylor instability by analyzing the initial linear instability, the nonlinear plume growth, and the subsequent mixing resulting from this flow instability. The linear stability theory demonstrates that the thickness of the interface between the two layers of the Rayleigh-Taylor instability changes the wave number of maximum growth from the classical prediction. Our predicted wave number of maximum growth agrees well with two-dimensional direct numerical simulations of the diffused interface Rayleigh-Taylor instability. The nonlinear equation of state introduces asymmetry in the growing plumes about the density interface, preferentially generating kinetic energy in the lower layer. This asymmetry further introduces asymmetry in the location of the mixing. We analyze the energy evolution in the system and argue that the nonlinear equation of state will modify the distribution of heat in temperate lakes.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Interface Width Effect on the Weakly Nonlinear Rayleigh-Taylor Instability in Spherical Geometry
    Yang, Yun-Peng
    Zhang, Jing
    Li, Zhi-Yuan
    Wang, Li-Feng
    Wu, Jun-Feng
    Ye, Wun-Hua
    He, Xian-Tu
    CHINESE PHYSICS LETTERS, 2020, 37 (07)
  • [22] Coupling between interface and velocity perturbations in the weakly nonlinear Rayleigh-Taylor instability
    Wang, L. F.
    Wu, J. F.
    Fan, Z. F.
    Ye, W. H.
    He, X. T.
    Zhang, W. Y.
    Dai, Z. S.
    Gu, J. F.
    Xue, C.
    PHYSICS OF PLASMAS, 2012, 19 (11)
  • [23] The Rayleigh-Taylor instability
    Piriz, A. R.
    Cortazar, O. D.
    Lopez Cela, J. J.
    Tahir, N. A.
    AMERICAN JOURNAL OF PHYSICS, 2006, 74 (12) : 1095 - 1098
  • [24] Interface width effect on the classical Rayleigh-Taylor instability in the weakly nonlinear regime
    Wang, L. F.
    Ye, W. H.
    Li, Y. J.
    PHYSICS OF PLASMAS, 2010, 17 (05)
  • [25] Rayleigh-Taylor Instability of an Interface in a Nonwettable Porous Medium
    Il'ichev, A. T.
    Tsypkin, G. G.
    FLUID DYNAMICS, 2007, 42 (01) : 83 - 90
  • [26] Rayleigh-Taylor instability of a miscible interface in a confined domain
    Lyubimova, T.
    Vorobev, A.
    Prokopev, S.
    PHYSICS OF FLUIDS, 2019, 31 (01)
  • [27] Rayleigh-Taylor instability of an interface in a nonwettable porous medium
    A. T. Il’ichev
    G. G. Tsypkin
    Fluid Dynamics, 2007, 42 : 83 - 90
  • [28] Nonlinear Rayleigh-Taylor instability of rotating inviscid fluids
    Tao, J. J.
    He, X. T.
    Ye, W. H.
    Busse, F. H.
    PHYSICAL REVIEW E, 2013, 87 (01):
  • [29] MODE-COUPLING IN NONLINEAR RAYLEIGH-TAYLOR INSTABILITY
    OFER, D
    SHVARTS, D
    ZINAMON, Z
    ORSZAG, SA
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (11): : 3549 - 3561
  • [30] Nonlinear three-dimensional Rayleigh-Taylor instability
    Abarzhi, S.I.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1999, 59 (2-A):