Interface width effect on the classical Rayleigh-Taylor instability in the weakly nonlinear regime

被引:45
|
作者
Wang, L. F. [1 ,2 ]
Ye, W. H. [1 ,3 ,4 ]
Li, Y. J. [2 ]
机构
[1] Inst Appl Phys & Computat Math, LCP, Beijing 100088, Peoples R China
[2] China Univ Min & Technol, State Key Lab Geomech & Deep Underground Engn, Beijing 100083, Peoples R China
[3] Zhejiang Univ, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China
[4] Peking Univ, CAPT, Beijing 100871, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
plasma density; plasma magnetohydrodynamics; plasma nonlinear processes; plasma simulation; Rayleigh-Taylor instability; GROWTH-RATES; SUPERPOSED FLUIDS; DENSITY GRADIENTS; DISPERSION CURVE; GENERAL-ANALYSIS; ABLATION FRONTS; JET EXPERIMENTS; STABILITY; TARGETS; COMPRESSIBILITY;
D O I
10.1063/1.3396369
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper, the interface width effects (i.e., the density gradient effects or the density transition layer effects) on the Rayleigh-Taylor instability (RTI) in the weakly nonlinear (WN) regime are investigated by numerical simulation (NS). It is found that the interface width effects dramatically influence the linear growth rate in the linear growth regime and the mode coupling process in the WN growth regime. First, the interface width effects decrease the linear growth rate of the RTI, particularly for the short perturbation wavelengths. Second, the interface width effects suppress (reduce) the third-order feedback to the fundamental mode, which induces the nonlinear saturation amplitude (NSA) to exceed the classical prediction, 0.1 lambda. The wider the density transition layer is, the larger the NSA is. The NSA in our NS can reach a half of its perturbation wavelength. Finally, the interface width effects suppress the generation and the growth of the second and the third harmonics. The ability to suppress the harmonics' growth increases with the interface width but decreases with the perturbation wavelength. On the whole, in the WN regime, the interface width effects stabilize the RTI, except for an enhancement of the NSA, which is expected to improve the understanding of the formation mechanism for the astrophysical jets, and for the jetlike long spikes in the high energy density physics. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3396369]
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Interface Width Effect on the Weakly Nonlinear Rayleigh-Taylor Instability in Spherical Geometry
    Yang, Yun-Peng
    Zhang, Jing
    Li, Zhi-Yuan
    Wang, Li-Feng
    Wu, Jun-Feng
    Ye, Wun-Hua
    He, Xian-Tu
    CHINESE PHYSICS LETTERS, 2020, 37 (07)
  • [2] Interface Width Effect on the Weakly Nonlinear Rayleigh–Taylor Instability in Spherical Geometry
    杨云鹏
    张靖
    李志远
    王立锋
    吴俊峰
    叶文华
    贺贤土
    Chinese Physics Letters, 2020, 37 (07) : 52 - 55
  • [3] Preheating ablation effects on the Rayleigh-Taylor instability in the weakly nonlinear regime
    Wang, L. F.
    Ye, W. H.
    Sheng, Z. M.
    Don, Wai-Sun
    Li, Y. J.
    He, X. T.
    PHYSICS OF PLASMAS, 2010, 17 (12)
  • [4] Harmonic growth of spherical Rayleigh-Taylor instability in weakly nonlinear regime
    Liu, Wanhai
    Chen, Yulian
    Yu, Changping
    Li, Xinliang
    PHYSICS OF PLASMAS, 2015, 22 (11)
  • [5] Interface coupling effects of weakly nonlinear Rayleigh-Taylor instability with double interfaces
    Li, Zhiyuan
    Wang, Lifeng
    Wu, Junfeng
    Ye, Wenhua
    CHINESE PHYSICS B, 2020, 29 (03)
  • [6] Coupling between interface and velocity perturbations in the weakly nonlinear Rayleigh-Taylor instability
    Wang, L. F.
    Wu, J. F.
    Fan, Z. F.
    Ye, W. H.
    He, X. T.
    Zhang, W. Y.
    Dai, Z. S.
    Gu, J. F.
    Xue, C.
    PHYSICS OF PLASMAS, 2012, 19 (11)
  • [7] Weakly nonlinear theory for the dynamical Rayleigh-Taylor instability
    Berning, M.
    Rubenchik, A.M.
    Physics of Fluids, 1998, 10 (07)
  • [8] A weakly nonlinear theory for the dynamical Rayleigh-Taylor instability
    Berning, M
    Rubenchik, AM
    PHYSICS OF FLUIDS, 1998, 10 (07) : 1564 - 1587
  • [9] Cylindrical effects in weakly nonlinear Rayleigh-Taylor instability
    Liu Wan-Hai
    Ma Wen-Fang
    Wang Xu-Lin
    CHINESE PHYSICS B, 2015, 24 (01)
  • [10] Statistical approach of weakly nonlinear ablative Rayleigh-Taylor instability
    Garnier, J
    Masse, L
    PHYSICS OF PLASMAS, 2005, 12 (06) : 1 - 11