Low-Temperature Substrate Bonding Technology for High Power GaN-on-Diamond HEMTs

被引:0
|
作者
Chu, Kenneth K. [1 ]
Chao, Pane C. [1 ]
Diaz, Jose A. [1 ]
Yurovchak, Thomas [1 ]
Creamer, Carlton T. [1 ]
Sweetland, Scott [1 ]
Kallaher, Raymond L. [2 ]
McGray, Craig [2 ]
机构
[1] BAE Syst, Nashua, NH 03060 USA
[2] Modern Microsyst Inc, Silver Spring, MD 20904 USA
关键词
GaN-on-diamond; high-electron-mobility transistor (HEMT); epitaxial transfer; substrate bonding; microwave power; thermal management;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report the first demonstration of GaN-on-diamond RF power transistors produced by low-temperature substrate bonding technology. GaN high-electron-mobility transistors (HEMTs) are lifted from the original SiC substrate post fabrication and transferred onto high-quality polycrystalline diamond with thermal conductivity of 1,800 - 2,000 W/mK. Resulting GaN-on-diamond HEMTs demonstrated DC current density of 1.0A/mm, transconductance of 330mS/mm, and RF output power density of 6.0W/mm at 10GHz (CW). Finite-element thermal modeling indicates GaN-on-diamond technology based on low-temperature substrate bonding is capable of 3X increased power per area compared to conventional GaN-on-SiC devices.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] The World's First High Voltage GaN-on-Diamond Power Devices
    Baltynov, Turar
    Unni, Vineet
    Narayanan, E. M. Sankara
    [J]. ESSDERC 2015 PROCEEDINGS OF THE 45TH EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE, 2015, : 126 - 129
  • [22] Thermal simulation of high power GaN-on-diamond substrates for HEMT applications
    Guo, Huaixin
    Kong, Yuechan
    Chen, Tangsheng
    [J]. DIAMOND AND RELATED MATERIALS, 2017, 73 : 260 - 266
  • [23] Thermal characteristics of GaN-on-diamond HEMTs: Impact of anisotropic and inhomogeneous thermal conductivity of polycrystalline diamond
    Zou, Bo
    Sun, Huarui
    Guo, Huaixin
    Dai, Bing
    Zhu, Jiaqi
    [J]. DIAMOND AND RELATED MATERIALS, 2019, 95 : 28 - 35
  • [24] Surface activated bonding of SiC/diamond for thermal management of high-output power GaN HEMTs
    Minoura, Yuichi
    Ohki, Toshihiro
    Okamoto, Naoya
    Yamada, Atsushi
    Makiyama, Kozo
    Kotani, Junji
    Ozaki, Shiro
    Sato, Masaru
    Nakamura, Norikazu
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2020, 59 (SG)
  • [25] EPSRC Grant to Develop GaN-on-Diamond Microwave Technology
    不详
    [J]. MICROWAVE JOURNAL, 2017, 60 (03) : 53 - 53
  • [26] The world's first high voltage GaN-on-Diamond power semiconductor devices
    Baltynov, Turar
    Unni, Vineet
    Narayanan, E. M. Sankara
    [J]. SOLID-STATE ELECTRONICS, 2016, 125 : 111 - 117
  • [27] Simple Low-Temperature GaN/Diamond Bonding Process with an Atomically Thin Intermediate Layer
    Matsumae, Takashi
    Okita, Sho
    Fukumoto, Shoya
    Hayase, Masanori
    Kurashima, Yuichi
    Takagi, Hideki
    [J]. ACS APPLIED NANO MATERIALS, 2023, 6 (15) : 14076 - 14082
  • [28] FEM thermal and stress analysis of bonded GaN-on-diamond substrate
    Zhai, Wenbo
    Zhang, Jingwen
    Chen, Xudong
    Bu, Renan
    Wang, Hongxing
    Hou, Xun
    [J]. AIP ADVANCES, 2017, 7 (09):
  • [29] Reducing GaN-on-diamond interfacial thermal resistance for high power transistor applications
    Sun, Huarui
    Simon, Roland B.
    Pomeroy, James W.
    Francis, Daniel
    Faili, Firooz
    Twitchen, Daniel J.
    Kuball, Martin
    [J]. APPLIED PHYSICS LETTERS, 2015, 106 (11)
  • [30] The Effect of Interlayer Microstructure on the Thermal Boundary Resistance of GaN-on-Diamond Substrate
    Jia, Xin
    Huang, Lu
    Sun, Miao
    Zhao, Xia
    Wei, Junjun
    Li, Chengming
    [J]. COATINGS, 2022, 12 (05)