Interpretation of multivariate outliers for compositional data

被引:92
|
作者
Filzmoser, Peter [1 ]
Hron, Karel [2 ]
Reimann, Clemens [3 ]
机构
[1] Vienna Univ Technol, Dept Stat & Probabil Theory, A-1040 Vienna, Austria
[2] Palacky Univ, Fac Sci, Dept Math Anal & Applicat Math, CZ-77146 Olomouc, Czech Republic
[3] Geol Survey Norway NGU, N-7491 Trondheim, Norway
关键词
Compositional data; Log-ratio transformations; Outlier detection; Compositional biplot; ROBUST METHODS; GEOCHEMISTRY;
D O I
10.1016/j.cageo.2011.06.014
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Compositional data-and most data in geochemistry are of this type-carry relative rather than absolute information. For multivariate outlier detection methods this implies that not the given data but appropriately transformed data need to be used. We use the isometric logratio (ilr) transformation, which seems to be generally the most proper one for theoretical and practical reasons. In this space it is difficult to interpret the outliers, because the reason for outlyingness can be complex. Therefore we introduce tools that support the interpretation of outliers by representing multivariate information in biplots, maps, and univariate scatterplots. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:77 / 85
页数:9
相关论文
共 50 条
  • [1] Detecting multivariate outliers in artefact compositional data
    Baxter, MJ
    [J]. ARCHAEOMETRY, 1999, 41 : 321 - 338
  • [2] ON THE DETECTION OF MULTIVARIATE DATA OUTLIERS AND REGRESSION OUTLIERS
    LAZRAQ, A
    CLEROUX, R
    [J]. DATA ANALYSIS, LEARNING SYMBOLIC AND NUMERIC KNOWLEDGE, 1989, : 133 - 140
  • [3] Multivariate Outlier Detection in Applied Data Analysis: Global, Local, Compositional and Cellwise Outliers
    Filzmoser, Peter
    Gregorich, Mariella
    [J]. MATHEMATICAL GEOSCIENCES, 2020, 52 (08) : 1049 - 1066
  • [4] Multivariate Outlier Detection in Applied Data Analysis: Global, Local, Compositional and Cellwise Outliers
    Filzmoser, Peter
    Gregorich, Mariella
    [J]. Mathematical Geosciences, 2020, 52 (08): : 1049 - 1066
  • [5] Multivariate Outlier Detection in Applied Data Analysis: Global, Local, Compositional and Cellwise Outliers
    Peter Filzmoser
    Mariella Gregorich
    [J]. Mathematical Geosciences, 2020, 52 : 1049 - 1066
  • [6] Correlation of Outliers in Multivariate Data
    Kaszuba, Bartosz
    [J]. DATA ANALYSIS, MACHINE LEARNING AND KNOWLEDGE DISCOVERY, 2014, : 265 - 272
  • [7] Identification of outliers in multivariate data
    Rocke, DM
    Woodruff, DL
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (435) : 1047 - 1061
  • [8] PROPAGATION OF OUTLIERS IN MULTIVARIATE DATA
    Alqallaf, Fatemah
    Van Aelst, Stefan
    Yohai, Victor J.
    Zamar, Ruben H.
    [J]. ANNALS OF STATISTICS, 2009, 37 (01): : 311 - 331
  • [9] IDENTIFYING MULTIPLE OUTLIERS IN MULTIVARIATE DATA
    HADI, AS
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1992, 54 (03): : 761 - 771
  • [10] Principal component analysis for compositional data with outliers
    Filzmoser, Peter
    Hron, Karel
    Reimann, Clemens
    [J]. ENVIRONMETRICS, 2009, 20 (06) : 621 - 632