Interpretation of multivariate outliers for compositional data

被引:92
|
作者
Filzmoser, Peter [1 ]
Hron, Karel [2 ]
Reimann, Clemens [3 ]
机构
[1] Vienna Univ Technol, Dept Stat & Probabil Theory, A-1040 Vienna, Austria
[2] Palacky Univ, Fac Sci, Dept Math Anal & Applicat Math, CZ-77146 Olomouc, Czech Republic
[3] Geol Survey Norway NGU, N-7491 Trondheim, Norway
关键词
Compositional data; Log-ratio transformations; Outlier detection; Compositional biplot; ROBUST METHODS; GEOCHEMISTRY;
D O I
10.1016/j.cageo.2011.06.014
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Compositional data-and most data in geochemistry are of this type-carry relative rather than absolute information. For multivariate outlier detection methods this implies that not the given data but appropriately transformed data need to be used. We use the isometric logratio (ilr) transformation, which seems to be generally the most proper one for theoretical and practical reasons. In this space it is difficult to interpret the outliers, because the reason for outlyingness can be complex. Therefore we introduce tools that support the interpretation of outliers by representing multivariate information in biplots, maps, and univariate scatterplots. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:77 / 85
页数:9
相关论文
共 50 条
  • [31] Change point detection for compositional multivariate data
    Prabuchandran K. J.
    Nitin Singh
    Pankaj Dayama
    Ashutosh Agarwal
    Vinayaka Pandit
    [J]. Applied Intelligence, 2022, 52 : 1930 - 1955
  • [32] A comparative study of methods to handle outliers in multivariate data analysis
    Grentzelos, Christos
    Caroni, Chrysseis
    Barranco-Chamorro, Inmaculada
    [J]. COMPUTATIONAL AND MATHEMATICAL METHODS, 2021, 3 (03)
  • [33] UNION-INTERSECTION TESTING FOR OUTLIERS IN MULTIVARIATE NORMAL DATA
    CARONI, C
    PRESCOTT, P
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1995, 51 (2-4) : 185 - 196
  • [34] COMPARISON OF DIFFERENT TECHNIQUES FOR DETECTION OF OUTLIERS IN CASE OF MULTIVARIATE DATA
    Iqbal, Muhammad Zafar
    Habib, Samra
    Khan, Muhammad Imran
    Kashif, Muhammad
    [J]. PAKISTAN JOURNAL OF AGRICULTURAL SCIENCES, 2020, 57 (03): : 865 - 869
  • [35] Detection of multivariate outliers in business survey data with incomplete information
    Todorov, Valentin
    Templ, Matthias
    Filzmoser, Peter
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2011, 5 (01) : 37 - 56
  • [36] Eigenstructure-Based Angle for Detecting Outliers in Multivariate Data
    Aziz, Nazrina
    [J]. SAINS MALAYSIANA, 2014, 43 (12): : 1973 - 1977
  • [37] Detecting outliers in multivariate data and visualization-R scripts
    Kim, Sung-Soo
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2018, 31 (04) : 517 - 528
  • [38] Finding multivariate outliers in fMRI time-series data
    Magnotti, John F.
    Billor, Nedret
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2014, 53 : 115 - 124
  • [39] Detection of multivariate outliers in business survey data with incomplete information
    Valentin Todorov
    Matthias Templ
    Peter Filzmoser
    [J]. Advances in Data Analysis and Classification, 2011, 5 : 37 - 56
  • [40] Detecting multivariate outliers
    Caroni, C
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1996, 45 (04) : 495 - 495