PROPAGATION OF OUTLIERS IN MULTIVARIATE DATA

被引:92
|
作者
Alqallaf, Fatemah [1 ]
Van Aelst, Stefan [2 ]
Yohai, Victor J. [3 ]
Zamar, Ruben H. [4 ]
机构
[1] Kuwait Univ, Fac Sci, Dept Stat & Operat Res, Safat 13060, Kuwait
[2] Univ Ghent, Dept Appl Math & Comp Sci, B-9000 Ghent, Belgium
[3] Univ Buenos Aires, Dept Math, RA-1426 Buenos Aires, DF, Argentina
[4] Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
来源
ANNALS OF STATISTICS | 2009年 / 37卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
Breakdown point; contamination model; independent contamination; influence function; robustness; M-ESTIMATORS; LOCATION; SCATTER; COVARIANCE; REGRESSION; MATRICES; BIAS;
D O I
10.1214/07-AOS588
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the performance of robust estimates of multivariate location under nonstandard data contamination models such as componentwise outliers (i.e., contamination in each variable is independent from the other variables). This model brings up a possible new source of statistical error that we call "propagation of outliers." This source of error is Unusual in the sense that it is generated by the data processing itself and takes place after the data has been collected. We define and derive the influence function of robust multivariate location estimates under flexible contamination models and use it to investigate the effect of propagation of outliers. Furthermore, we show that standard high-breakdown affine equivariant estimators propagate outliers and therefore show poor breakdown behavior under componentwise contamination when the dimension d is high.
引用
收藏
页码:311 / 331
页数:21
相关论文
共 50 条