Rellich, Gagliardo-Nirenberg, Trudinger and Caffarelli-Kohn-Nirenberg inequalities for Dunkl operators and applications

被引:3
|
作者
Velicu, Andrei [1 ,2 ]
Yessirkegenov, Nurgissa [3 ,4 ,5 ]
机构
[1] Imperial Coll London, Dept Math, Huxley Bldg,180 Queens Gate, London SW7 2AZ, England
[2] Univ Paul Sabatier, Inst Math Toulouse, 118 Route Narbonne, F-31062 Toulouse, France
[3] Univ Ghent, Dept Math Anal Log & Discrete Math, 281 Krijgslaan,Bldg S8, Ghent, Belgium
[4] Suleyman Demirel Univ, Kaskelen, Kazakhstan
[5] Inst Math & Math Modeling, 125 Pushkin Str, Alma Ata 050010, Kazakhstan
基金
英国工程与自然科学研究理事会;
关键词
RIESZ-POTENTIALS; MAXIMAL-FUNCTION; L-P; TRANSFORM; PROOF;
D O I
10.1007/s11856-021-2261-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we introduce several extended versions of the classical Caffarelli-Kohn-Nirenberg inequalities. Moreover, we obtain weighted higher order Rellich, weighted Gagliardo-Nirenberg, Caffarelli-Kohn-Nirenberg, Trudinger inequalities and the uncertainty principle for Dunkl operators. Furthermore, we give an application of the Gagliardo-Nirenberg inequality to the Cauchy problem for the nonlinear damped wave equations for the Dunkl Laplacian.
引用
收藏
页码:741 / 782
页数:42
相关论文
共 50 条
  • [1] Rellich, Gagliardo—Nirenberg, Trudinger and Caffarelli—Kohn—Nirenberg inequalities for Dunkl operators and applications
    Andrei Velicu
    Nurgissa Yessirkegenov
    [J]. Israel Journal of Mathematics, 2022, 247 : 741 - 782
  • [2] On the Caffarelli-Kohn-Nirenberg inequalities
    Catrina, F
    Wang, ZQ
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (06): : 437 - 442
  • [3] On Hardy and Caffarelli-Kohn-Nirenberg inequalities
    Hoai-Minh Nguyen
    Squassina, Marco
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2019, 139 (02): : 773 - 797
  • [4] On Hardy and Caffarelli-Kohn-Nirenberg inequalities
    Hoai-Minh Nguyen
    Marco Squassina
    [J]. Journal d'Analyse Mathématique, 2019, 139 : 773 - 797
  • [5] Fractional Caffarelli-Kohn-Nirenberg inequalities
    Hoai-Minh Nguyen
    Squassina, Marco
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (09) : 2661 - 2672
  • [6] NEW TYPES OF CAFFARELLI-KOHN-NIRENBERG INEQUALITIES AND APPLICATIONS
    Guan, Xiaohong
    Guo, Zongming
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (12) : 4071 - 4087
  • [7] Sobolev, Hardy, Gagliardo-Nirenberg, and Caffarelli-Kohn-Nirenberg-type inequalities for some fractional derivatives
    Kassymov, Aidyn
    Ruzhansky, Michael
    Tokmagambetov, Niyaz
    Torebek, Berikbol T.
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 15 (01)
  • [8] Several logarithmic Caffarelli-Kohn-Nirenberg inequalities and applications
    Feng, Tingfu
    Niu, Pengcheng
    Qiao, Jing
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 457 (01) : 822 - 840
  • [9] Some improved Caffarelli-Kohn-Nirenberg inequalities
    Abdellaoui, B
    Colorado, E
    Peral, I
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 23 (03) : 327 - 345
  • [10] The Caffarelli-Kohn-Nirenberg inequalities for radial functions
    Mallick, Arka
    Hoai-Minh Nguyen
    [J]. COMPTES RENDUS MATHEMATIQUE, 2023, 361 (01) : 1175 - 1189