Rellich, Gagliardo-Nirenberg, Trudinger and Caffarelli-Kohn-Nirenberg inequalities for Dunkl operators and applications

被引:3
|
作者
Velicu, Andrei [1 ,2 ]
Yessirkegenov, Nurgissa [3 ,4 ,5 ]
机构
[1] Imperial Coll London, Dept Math, Huxley Bldg,180 Queens Gate, London SW7 2AZ, England
[2] Univ Paul Sabatier, Inst Math Toulouse, 118 Route Narbonne, F-31062 Toulouse, France
[3] Univ Ghent, Dept Math Anal Log & Discrete Math, 281 Krijgslaan,Bldg S8, Ghent, Belgium
[4] Suleyman Demirel Univ, Kaskelen, Kazakhstan
[5] Inst Math & Math Modeling, 125 Pushkin Str, Alma Ata 050010, Kazakhstan
基金
英国工程与自然科学研究理事会;
关键词
RIESZ-POTENTIALS; MAXIMAL-FUNCTION; L-P; TRANSFORM; PROOF;
D O I
10.1007/s11856-021-2261-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we introduce several extended versions of the classical Caffarelli-Kohn-Nirenberg inequalities. Moreover, we obtain weighted higher order Rellich, weighted Gagliardo-Nirenberg, Caffarelli-Kohn-Nirenberg, Trudinger inequalities and the uncertainty principle for Dunkl operators. Furthermore, we give an application of the Gagliardo-Nirenberg inequality to the Cauchy problem for the nonlinear damped wave equations for the Dunkl Laplacian.
引用
收藏
页码:741 / 782
页数:42
相关论文
共 50 条