On the edge-Szeged index of unicyclic graphs with perfect matchings

被引:3
|
作者
He, Shengjie [1 ]
Hao, Rong-Xia [1 ]
Feng, Yan-Quan [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Edge-Szeged index; Szeged index; Unicyclic graph; Perfect matching; MAXIMUM WIENER INDEX; EXTREMAL CACTI; TREES; RESPECT;
D O I
10.1016/j.dam.2020.03.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The edge-Szeged index of a graph G is defined as Sz(e)(G) = Sigma(uv is an element of E(G)) m(u)(uv vertical bar G)m(v)(uv vertical bar G), where m(u)(uv vertical bar G) (resp., m(v)(uv vertical bar G)) is the number of edges whose distance to vertex u (resp., v) is smaller than the distance to vertex v (resp., u), respectively. In this paper, we characterize the graphs with minimum edge-Szeged index among all the unicyclic graphs with given order and perfect matchings. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:207 / 223
页数:17
相关论文
共 50 条
  • [41] Cactus graphs with minimum edge revised Szeged index
    Liu, Mengmeng
    Wang, Shujing
    DISCRETE APPLIED MATHEMATICS, 2018, 247 : 90 - 96
  • [42] On minimum revised edge Szeged index of bicyclic graphs
    Liu, Mengmeng
    Ji, Shengjin
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (03) : 249 - 254
  • [43] Edge-Szeged and vertex-PIindices of Some Benzenoid Systems
    Bagheri, Zohreh
    Mahmian, Anehgaldi
    Khormali, Omid
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2008, 3 (01): : 31 - 39
  • [44] On Unicyclic Graphs with Uniquely Restricted Maximum Matchings
    Levit, Vadim E.
    Mandrescu, Eugen
    GRAPHS AND COMBINATORICS, 2013, 29 (06) : 1867 - 1879
  • [45] On Unicyclic Graphs with Uniquely Restricted Maximum Matchings
    Vadim E. Levit
    Eugen Mandrescu
    Graphs and Combinatorics, 2013, 29 : 1867 - 1879
  • [46] On the sharp bounds of bicyclic graphs regarding edge Szeged index
    Yao, Yan
    Ji, Shengjin
    Li, Guang
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 377
  • [47] Edge-Connectivity and Pairwise Disjoint Perfect Matchings in Regular Graphs
    Yulai Ma
    Davide Mattiolo
    Eckhard Steffen
    Isaak H. Wolf
    Combinatorica, 2024, 44 : 429 - 440
  • [48] Edge-Connectivity and Pairwise Disjoint Perfect Matchings in Regular Graphs
    Ma, Yulai
    Mattiolo, Davide
    Steffen, Eckhard
    Wolf, Isaak H.
    COMBINATORICA, 2024, 44 (02) : 429 - 440
  • [49] On the number of disjoint perfect matchings of regular graphs with given edge connectivity
    Lu, Hongliang
    Lin, Yuqing
    DISCRETE MATHEMATICS, 2017, 340 (03) : 305 - 310
  • [50] On graphs with perfect internal matchings
    Acta Cybern, 2 (111):