On the edge-Szeged index of unicyclic graphs with perfect matchings

被引:3
|
作者
He, Shengjie [1 ]
Hao, Rong-Xia [1 ]
Feng, Yan-Quan [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Edge-Szeged index; Szeged index; Unicyclic graph; Perfect matching; MAXIMUM WIENER INDEX; EXTREMAL CACTI; TREES; RESPECT;
D O I
10.1016/j.dam.2020.03.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The edge-Szeged index of a graph G is defined as Sz(e)(G) = Sigma(uv is an element of E(G)) m(u)(uv vertical bar G)m(v)(uv vertical bar G), where m(u)(uv vertical bar G) (resp., m(v)(uv vertical bar G)) is the number of edges whose distance to vertex u (resp., v) is smaller than the distance to vertex v (resp., u), respectively. In this paper, we characterize the graphs with minimum edge-Szeged index among all the unicyclic graphs with given order and perfect matchings. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:207 / 223
页数:17
相关论文
共 50 条
  • [21] ON THE DISTANCE SPECTRAL RADIUS OF UNICYCLIC GRAPHS WITH PERFECT MATCHINGS
    Zhang, Xiao Ling
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2014, 27 : 569 - 587
  • [22] Ordering of Unicyclic Graphs with Perfect Matchings by Minimal Energies
    Wang, Wen-Huan
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2011, 66 (03) : 927 - 942
  • [23] The Edge-Szeged Index and the PI Index of Benzenoid Systems in Linear Time
    Tratnik, Niko
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2017, 77 (02) : 393 - 406
  • [24] On the Revised Szeged Index of Unicyclic Graphs with Given Diameter
    Aimei Yu
    Kun Peng
    Rong-Xia Hao
    Jiahao Fu
    Yingsheng Wang
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 651 - 672
  • [25] On the Revised Szeged Index of Unicyclic Graphs with Given Diameter
    Yu, Aimei
    Peng, Kun
    Hao, Rong-Xia
    Fu, Jiahao
    Wang, Yingsheng
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (01) : 651 - 672
  • [26] ON SZEGED INDICES OF UNICYCLIC GRAPHS
    Zhou, Bo
    Cai, Xiaochun
    Du, Zhibin
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2010, 63 (01) : 113 - 132
  • [27] On the index of tricyclic graphs with perfect matchings
    Geng, Xianya
    Li, Shuchao
    Li, Xuechao
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (12) : 2304 - 2316
  • [28] On the index of bicyclic graphs with perfect matchings
    Chang, A
    Tian, F
    Yu, AM
    DISCRETE MATHEMATICS, 2004, 283 (1-3) : 51 - 59
  • [29] On the edge Szeged index of bridge graphs
    Xing, Rundan
    Zhou, Bo
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (9-10) : 489 - 492
  • [30] The edge Szeged index of product graphs
    Khalifeh, Mohammad Hosein
    Yousefi-Azari, Hasan
    Ashrafi, Ali Reza
    Gutman, Ivan
    CROATICA CHEMICA ACTA, 2008, 81 (02) : 277 - 281