Double Refinement Network for Efficient Monocular Depth Estimation

被引:0
|
作者
Durasov, Nikita [1 ,2 ]
Romanov, Mikhail [1 ]
Bubnova, Valeriya [1 ]
Bogomolov, Pavel [1 ]
Konushin, Anton [1 ]
机构
[1] Samsung AI Ctr Moscow, Moscow, Russia
[2] Ecole Polytech Fed Lausanne, Sch Comp & Commun Sci, Lausanne, Switzerland
关键词
D O I
10.1109/iros40897.2019.8968227
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monocular depth estimation is the task of obtaining a measure of distance for each pixel using a single image. It is an important problem in computer vision and is usually solved using neural networks. Though recent works in this area have shown significant improvement in accuracy, the state-of-the-art methods tend to require massive amounts of memory and time to process an image. The main purpose of this work is to improve the performance of the latest solutions with no decrease in accuracy. To this end, we introduce the Double Refinement Network architecture. The proposed method achieves state-of-the-art results on the standard benchmark RGB-D dataset NYU Depth v2, while its frames per second rate is significantly higher (up to 18 times speedup per image at batch size 1) and the RAM usage is lower.
引用
收藏
页码:5889 / 5894
页数:6
相关论文
共 50 条
  • [21] GBNet: Gradient Boosting Network for Monocular Depth Estimation
    Han, Daechan
    Choi, Yukyung
    [J]. 2021 21ST INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2021), 2021, : 342 - 346
  • [22] Multi-scale depth classification network for monocular depth estimation
    Yang, Yi
    Tian, Lihua
    Li, Chen
    Zhang, Botong
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2022, 102
  • [23] Lightweight Monocular Depth Estimation with an Edge Guided Network
    Dong, Xingshuai
    Garratt, Matthew A.
    Anavatti, Sreenatha G.
    Abbass, Hussein A.
    Dong, Junyu
    [J]. 2022 17TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2022, : 204 - 210
  • [24] Neural Contourlet Network for Monocular 360° Depth Estimation
    Shen, Zhijie
    Lin, Chunyu
    Nie, Lang
    Liao, Kang
    Zhao, Yao
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (12) : 8574 - 8585
  • [25] Chfnet: a coarse-to-fine hierarchical refinement model for monocular depth estimation
    Chen, Han
    Wang, Yongxiong
    [J]. MACHINE VISION AND APPLICATIONS, 2024, 35 (04)
  • [26] DFRNets: Unsupervised Monocular Depth Estimation Using a Siamese Architecture for Disparity Refinement
    Yusiong, John Paul Tan
    Naval, Prospero Clara, Jr.
    [J]. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY, 2020, 28 (01): : 163 - 177
  • [27] Efficient Unsupervised Monocular Depth Estimation with Inter-Frame Depth Interpolation
    Zhang, Min
    Li, Jianhua
    [J]. IMAGE AND GRAPHICS (ICIG 2021), PT III, 2021, 12890 : 729 - 741
  • [28] Efficient Monocular Depth Estimation for Edge Devices in Internet of Things
    Tu, Xiaohan
    Xu, Cheng
    Liu, Siping
    Li, Renfa
    Xie, Guoqi
    Huang, Jing
    Yang, Laurence Tianruo
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (04) : 2821 - 2832
  • [29] Efficient Monocular Image Depth Estimation Based on Transfer Learning
    Liu Jiatao
    Zhang Yaping
    Yang Yuwei
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (16)
  • [30] STRUCTURE GENERATION AND GUIDANCE NETWORK FOR UNSUPERVISED MONOCULAR DEPTH ESTIMATION
    Wang, Chaoqun
    Chen, Xuejin
    Min, Shaobo
    Wu, Feng
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 1264 - 1269