Neural Contourlet Network for Monocular 360° Depth Estimation

被引:4
|
作者
Shen, Zhijie [1 ,2 ]
Lin, Chunyu [1 ,2 ]
Nie, Lang [1 ,2 ]
Liao, Kang [1 ,2 ]
Zhao, Yao [1 ,2 ]
机构
[1] Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
[2] Beijing Key Lab Adv Informat Sci & Network Technol, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Estimation; Distortion; Wavelet transforms; Feature extraction; Convolutional neural networks; Task analysis; Wavelet analysis; Monocular; 360; degrees; depth sstimation; distortion; contourlet;
D O I
10.1109/TCSVT.2022.3192283
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For a monocular 360 degrees image, depth estimation is a challenging because the distortion increases along the latitude. To perceive the distortion, existing methods devote to designing a deep and complex network architecture. In this paper, we provide a new perspective that constructs an interpretable and sparse representation for a 360 degrees image. Considering the importance of the geometric structure in depth estimation, we utilize the contourlet transform to capture an explicit geometric cue in the spectral domain and integrate it with an implicit cue in the spatial domain. Specifically, we propose a neural contourlet network consisting of a convolutional neural network and a contourlet transform branch. In the encoder stage, we design a spatial-spectral fusion module to effectively fuse two types of cues. Contrary to the encoder, we employ the inverse contourlet transform with learned low-pass subbands and band-pass directional subbands to compose the depth in the decoder. Experiments on the three popular 360 degrees panoramic image datasets demonstrate that the proposed approach outperforms the state-of-the-art schemes with faster convergence. Code is available at https://github.com/zhijieshenbjtu/Neural-Contourlet-Network-for-MODE.
引用
收藏
页码:8574 / 8585
页数:12
相关论文
共 50 条
  • [1] A Study on the Generality of Neural Network Structures for Monocular Depth Estimation
    Bae, Jinwoo
    Hwang, Kyumin
    Im, Sunghoon
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (04) : 2224 - 2238
  • [2] MobileXNet: An Efficient Convolutional Neural Network for Monocular Depth Estimation
    Dong, Xingshuai
    Garratt, Matthew A.
    Anavatti, Sreenatha G.
    Abbass, Hussein A.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (11) : 20134 - 20147
  • [3] 360MonoDepth: High-Resolution 360° Monocular Depth Estimation
    Rey-Area, Manuel
    Yuan, Mingze
    Richardt, Christian
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 3752 - 3762
  • [4] Monocular depth estimation via convolutional neural network with attention module
    Lan, Lingling
    Zhang, Yaping
    Yang, Yuwei
    Journal of Physics: Conference Series, 2021, 2025 (01):
  • [5] Monocular Depth Estimation Using Multi Scale Neural Network And Feature Fusion
    Sagar, Abhinav
    2022 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS (WACVW 2022), 2022, : 656 - 662
  • [6] 360 Depth Estimation in the Wild - the Depth360 Dataset and the SegFuse Network
    Feng, Qi
    Shum, Hubert P. H.
    Morishima, Shigeo
    2022 IEEE CONFERENCE ON VIRTUAL REALITY AND 3D USER INTERFACES (VR 2022), 2022, : 664 - 673
  • [7] Adversarial Mixture Density Network and Uncertainty-Based Joint Learning for 360° Monocular Depth Estimation
    Yun, Ilwi
    Lee, Hyuk-Jae
    Rhee, Chae Eun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 3592 - 3603
  • [8] Dynamic Guided Network for Monocular Depth Estimation
    Xing, Xiaoxia
    Cai, Yinghao
    Wang, Yanqing
    Lu, Tao
    Yang, Yiping
    Wen, Dayong
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 5459 - 5465
  • [9] Bidirectional Attention Network for Monocular Depth Estimation
    Aich, Shubhra
    Vianney, Jean Marie Uwabeza
    Islam, Md Amirul
    Kaur, Mannat
    Liu, Bingbing
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 11746 - 11752
  • [10] DTTNet: Depth Transverse Transformer Network for Monocular Depth Estimation
    Kamath, Shreyas K. M.
    Rajeev, Srijith
    Panetta, Karen
    Agaian, Sos S.
    MULTIMODAL IMAGE EXPLOITATION AND LEARNING 2022, 2022, 12100