A Computational Geometry Approach for Modeling Neuronal Fiber Pathways

被引:2
|
作者
Shailja, S. [1 ]
Zhang, Angela [1 ]
Manjunath, B. S. [1 ]
机构
[1] Univ Calif Santa Barbara, Santa Barbara, CA 93117 USA
基金
美国国家科学基金会;
关键词
Computational geometry; Computational pathology; Reeb graph; Trajectories; Brain fibers; Connectome;
D O I
10.1007/978-3-030-87237-3_17
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We propose a novel and efficient algorithm to model highlevel topological structures of neuronal fibers. Tractography constructs complex neuronal fibers in three dimensions that exhibit the geometry of white matter pathways in the brain. However, most tractography analysis methods are time consuming and intractable. We develop a computational geometry-based tractography representation that aims to simplify the connectivity of white matter fibers. Given the trajectories of neuronal fiber pathways, we model the evolution of trajectories that encodes geometrically significant events and calculate their point correspondence in the 3D brain space. Trajectory inter-distance is used as a parameter to control the granularity of the model that allows local or global representation of the tractogram. Using diffusion MRI data from Alzheimer's patient study, we extract tractography features from our model for distinguishing the Alzheimer's subject from the normal control. Software implementation of our algorithm is available on GitHub (https://github. com/UCSB-VRL/ReebGraph).
引用
收藏
页码:175 / 185
页数:11
相关论文
共 50 条
  • [31] Computational modeling of apoptotic signaling pathways induced by cisplatin
    Hong, Ji-Young
    Kim, Geun-Hong
    Kim, Jun-Woo
    Kwon, Soon-Sung
    Sato, Eisuke F.
    Cho, Kwang-Hyun
    Shim, Eun Bo
    BMC SYSTEMS BIOLOGY, 2012, 6
  • [32] A computational approach for the inverse problem of neuronal conductances determination
    Mandujano Valle, Jemy A.
    Madureira, Alexandre L.
    Leitao, Antonio
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2020, 48 (03) : 281 - 297
  • [33] A genetic and computational approach to structurally classify neuronal types
    Uygar Sümbül
    Sen Song
    Kyle McCulloch
    Michael Becker
    Bin Lin
    Joshua R. Sanes
    Richard H. Masland
    H. Sebastian Seung
    Nature Communications, 5
  • [34] A computational approach for the inverse problem of neuronal conductances determination
    Jemy A. Mandujano Valle
    Alexandre L. Madureira
    Antonio Leitão
    Journal of Computational Neuroscience, 2020, 48 : 281 - 297
  • [35] A genetic and computational approach to structurally classify neuronal types
    Suembuel, Uygar
    Song, Sen
    McCulloch, Kyle
    Becker, Michael
    Lin, Bin
    Sanes, Joshua R.
    Masland, Richard H.
    Seung, H. Sebastian
    NATURE COMMUNICATIONS, 2014, 5
  • [36] An Analysis of Geometric Semantic Crossover: A Computational Geometry Approach
    Castelli, Mauro
    Manzoni, Luca
    Goncalves, Ivo
    Vanneschi, Leonardo
    Trujillo, Leonardo
    Silva, Sara
    PROCEEDINGS OF THE 8TH INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL INTELLIGENCE, VOL 1: ECTA, 2016, : 201 - 208
  • [37] Study on computational geometry approach to Minimum Circumscribed Circle
    Liu, SG
    Yang, F
    Ma, XH
    PROCEEDINGS OF THE TWELFTH ANNUAL MEETING OF THE AMERICAN SOCIETY FOR PRECISION ENGINEERING, 1997, : 102 - 105
  • [38] A unifying approach for a class of problems in the computational geometry of polygons
    Chin, Francis
    Sampson, Jeffrey
    Wang, Cao An
    VISUAL COMPUTER, 1985, 1 (02): : 124 - 132
  • [39] Color printer characterization using a computational geometry approach
    Hardeberg, JY
    Schmitt, F
    FIFTH COLOR IMAGING CONFERENCE: COLOR SCIENCE, SYSTEMS, AND APPLICATIONS, 1997, : 96 - 99
  • [40] AN INTEGRAL GEOMETRY PROBLEM ALONG GEODESICS AND A COMPUTATIONAL APPROACH
    Golgeleyen, Ismet
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2010, 18 (02): : 91 - 112