A Computational Geometry Approach for Modeling Neuronal Fiber Pathways

被引:2
|
作者
Shailja, S. [1 ]
Zhang, Angela [1 ]
Manjunath, B. S. [1 ]
机构
[1] Univ Calif Santa Barbara, Santa Barbara, CA 93117 USA
基金
美国国家科学基金会;
关键词
Computational geometry; Computational pathology; Reeb graph; Trajectories; Brain fibers; Connectome;
D O I
10.1007/978-3-030-87237-3_17
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We propose a novel and efficient algorithm to model highlevel topological structures of neuronal fibers. Tractography constructs complex neuronal fibers in three dimensions that exhibit the geometry of white matter pathways in the brain. However, most tractography analysis methods are time consuming and intractable. We develop a computational geometry-based tractography representation that aims to simplify the connectivity of white matter fibers. Given the trajectories of neuronal fiber pathways, we model the evolution of trajectories that encodes geometrically significant events and calculate their point correspondence in the 3D brain space. Trajectory inter-distance is used as a parameter to control the granularity of the model that allows local or global representation of the tractogram. Using diffusion MRI data from Alzheimer's patient study, we extract tractography features from our model for distinguishing the Alzheimer's subject from the normal control. Software implementation of our algorithm is available on GitHub (https://github. com/UCSB-VRL/ReebGraph).
引用
收藏
页码:175 / 185
页数:11
相关论文
共 50 条
  • [21] Symmetries in differential geometry: A computational approach to prolongations
    Branson, Thomas
    Villanueva, Alfredo
    ACTA APPLICANDAE MATHEMATICAE, 2007, 98 (01) : 63 - 80
  • [22] Computational modeling of high performance steel fiber reinforced concrete using a micromorphic approach
    Huespe, A. E.
    Oliver, J.
    Mora, D. F.
    COMPUTATIONAL MECHANICS, 2013, 52 (06) : 1243 - 1264
  • [23] Computational modeling of high performance steel fiber reinforced concrete using a micromorphic approach
    A. E. Huespe
    J. Oliver
    D. F. Mora
    Computational Mechanics, 2013, 52 : 1243 - 1264
  • [24] Computational modeling of the effect of mecamylamine on neuronal nicotinic receptors
    A. I. Skorinkin
    R. A. Giniatullin
    Neurophysiology, 2000, 32 : 193 - 193
  • [25] Computational modeling of the effect of mecamylamine on neuronal nicotinic receptors
    Skorinkin, AI
    Giniatullin, RA
    NEUROPHYSIOLOGY, 2000, 32 (03) : 193 - 193
  • [26] Computational modeling of neuronal map development: insights into disease
    Simpson, Hugh D.
    Giacomantonio, Clare E.
    Goodhill, Geoffrey J.
    FUTURE NEUROLOGY, 2011, 6 (03) : 339 - 349
  • [27] A computational approach to Milnor fiber cohomology
    Dimca, Alexandru
    Sticlaru, Gabriel
    FORUM MATHEMATICUM, 2017, 29 (04) : 831 - 846
  • [28] A digital spine geometry database to inform computational modeling
    Knapik, Gregory G.
    Mendel, Ehud
    Bourekas, Eric
    Marras, William S.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2024, 12 (01):
  • [29] Geometry of fiber distribution in Marl yarn using the computational method
    Moezzi, Meysam
    Ghane, Mohammad
    JOURNAL OF THE TEXTILE INSTITUTE, 2019, 110 (04) : 508 - 514
  • [30] Case study: Reconstruction, visualization and quantification of neuronal fiber pathways
    Ding, ZH
    Gore, JC
    Anderson, AW
    VISUALIZATION 2001, PROCEEDINGS, 2001, : 453 - 456