Geometric phases in the presence of a composite environment

被引:23
|
作者
Villar, Paula I. [1 ]
Lombardo, Fernando C. [1 ]
机构
[1] UBA, Fac Ciencias Exactas & Nat, Dept Fis Juan Jose Giambiagi, RA-1428 Buenos Aires, DF, Argentina
来源
PHYSICAL REVIEW A | 2011年 / 83卷 / 05期
关键词
D O I
10.1103/PhysRevA.83.052121
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We compute the geometric phase for a spin-1/2 particle under the presence of a composite environment, composed of an external bath (modeled by an infinite set of harmonic oscillators) and another spin-1/2 particle. We consider both cases: an initial entanglement between the spin-1/2 particles and an initial product state in order to see if the initial entanglement has an enhancement effect on the geometric phase of one of the spins. We follow the nonunitary evolution of the reduced density matrix and evaluate the geometric phase for a single two-level system. We also show that the initial entanglement enhances the sturdiness of the geometric phase under the presence of an external composite environment.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Adiabatic driving, geometric phases, and the geometric tensor for classical states
    Manjarres, A. D. Bermudez
    ANNALS OF PHYSICS, 2024, 468
  • [32] Trigonometry of the quantum state space, geometric phases and relative phases
    Ortega, R
    Santander, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (02): : 459 - 485
  • [33] Holonomy of a principal composite bundle connection, non-Abelian geometric phases, and gauge theory of gravity
    Viennot, David
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (10)
  • [34] Geometric phases in open tripod systems
    Moller, Ditte
    Madsen, Lars Bojer
    Molmer, Klaus
    PHYSICAL REVIEW A, 2008, 77 (02):
  • [35] Geometric phases in discrete dynamical systems
    Cartwright, Julyan H. E.
    Piro, Nicolas
    Piro, Oreste
    Tuval, Idan
    PHYSICS LETTERS A, 2016, 380 (42) : 3485 - 3489
  • [36] Geometric phases for mixed states in interferometry
    Sjöqvist, E
    Pati, AK
    Ekert, A
    Anandan, JS
    Ericsson, M
    Oi, DKL
    Vedral, V
    PHYSICAL REVIEW LETTERS, 2000, 85 (14) : 2845 - 2849
  • [37] A geometric view of closure phases in interferometry
    Thyagarajan, Nithyanandan
    Carilli, Chris L.
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA, 2022, 39
  • [38] GEOMETRIC PHASES IN THE MOTION OF RIGID BODIES
    LEVI, M
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 122 (03) : 213 - 229
  • [39] Detection of geometric phases in superconducting nanocircuits
    Falci, G
    Fazio, R
    Palma, GM
    Siewert, J
    Vedral, V
    NATURE, 2000, 407 (6802) : 355 - 358
  • [40] GEOMETRIC PHASES IN THE QUANTISATION OF BOSONS AND FERMIONS
    Wu, Siye
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 90 (02) : 221 - 235