Geometric phases in the presence of a composite environment

被引:23
|
作者
Villar, Paula I. [1 ]
Lombardo, Fernando C. [1 ]
机构
[1] UBA, Fac Ciencias Exactas & Nat, Dept Fis Juan Jose Giambiagi, RA-1428 Buenos Aires, DF, Argentina
来源
PHYSICAL REVIEW A | 2011年 / 83卷 / 05期
关键词
D O I
10.1103/PhysRevA.83.052121
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We compute the geometric phase for a spin-1/2 particle under the presence of a composite environment, composed of an external bath (modeled by an infinite set of harmonic oscillators) and another spin-1/2 particle. We consider both cases: an initial entanglement between the spin-1/2 particles and an initial product state in order to see if the initial entanglement has an enhancement effect on the geometric phase of one of the spins. We follow the nonunitary evolution of the reduced density matrix and evaluate the geometric phase for a single two-level system. We also show that the initial entanglement enhances the sturdiness of the geometric phase under the presence of an external composite environment.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] On the Nature of Geometric and Topological Phases in the Presence of Conical Intersections
    Ibele, Lea M.
    Sangiogo Gil, Eduarda
    Curchod, Basile F. E.
    Agostini, Federica
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (51): : 11625 - 11631
  • [2] Nonunitary geometric phases: A qubit coupled to an environment with random noise
    Lombardo, Fernando C.
    Villar, Paula I.
    PHYSICAL REVIEW A, 2013, 87 (03):
  • [3] A note on geometric phases
    Salmistraro, F
    EUROPHYSICS LETTERS, 1998, 42 (06): : 595 - 598
  • [4] Family of geometric phases
    Salmistraro, F
    PHYSICAL REVIEW A, 1996, 54 (04): : 2755 - 2758
  • [5] GRAVITY AND GEOMETRIC PHASES
    CORICHI, A
    PIERRI, M
    PHYSICAL REVIEW D, 1995, 51 (10): : 5870 - 5875
  • [6] Geometric Derivation of the Delaunay Variables and Geometric Phases
    Dong Eui Chang
    Jerrold E. Marsden
    Celestial Mechanics and Dynamical Astronomy, 2003, 86 : 185 - 208
  • [7] Geometric derivation of the Delaunay variables and geometric phases
    Chang, DE
    Marsden, JE
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2003, 86 (02): : 185 - 208
  • [8] Zero-temperature geometric spin dephasing on a ring in the presence of an Ohmic environment
    Horovitz, B.
    Le Doussal, P.
    Zarand, G.
    EPL, 2011, 95 (05)
  • [9] Geometric phases in a scattering process
    Liu, H. D.
    Yi, X. X.
    PHYSICAL REVIEW A, 2011, 84 (02):
  • [10] Noncommutative geometry and geometric phases
    Basu, B.
    Dhar, S.
    Ghosh, S.
    EUROPHYSICS LETTERS, 2006, 76 (03): : 395 - 401