Analysis of a spatial Lotka-Volterra model with a finite range predator-prey interaction

被引:9
|
作者
Brigatti, E. [1 ,2 ]
Nunez-Lopez, M. [3 ]
Oliva, M. [4 ]
机构
[1] Univ Fed Fluminense, Inst Cincias Exatas, Volta Redonda, RJ, Brazil
[2] Univ Fed Fluminense, Inst Fis, BR-24210340 Niteroi, RJ, Brazil
[3] Inst Mexicano Petr, Mexico City 07730, DF, Mexico
[4] Univ La Habana, Fac Fis, Havana 10400, Cuba
来源
EUROPEAN PHYSICAL JOURNAL B | 2011年 / 81卷 / 03期
关键词
PATTERN-FORMATION; SIMILARITY; DYNAMICS; SYSTEM; COMPETITION; SPECIATION;
D O I
10.1140/epjb/e2011-10826-6
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We perform an analysis of a recent spatial version of the classical Lotka-Volterra model, where a finite scale controls individuals' interaction. We study the behavior of the predator-prey dynamics in physical spaces higher than one, showing how spatial patterns can emerge for some values of the interaction range and of the diffusion parameter.
引用
收藏
页码:321 / 326
页数:6
相关论文
共 50 条
  • [31] Permanence and global attractivity in a discrete Lotka-Volterra predator-prey model with delays
    Xu, Changjin
    Wu, Yusen
    Lu, Lin
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [32] Periodic solution of a Lotka-Volterra predator-prey model with dispersion and time delays
    Xu, R
    Chaplain, MAJ
    Davidson, FA
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 148 (02) : 537 - 560
  • [33] Dynamics in a Lotka-Volterra Predator-Prey Model with Time-Varying Delays
    Xu, Changjin
    Wu, Yusen
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [34] I-optimal curve for impulsive Lotka-Volterra predator-prey model
    Angelova, J
    Dishliev, A
    Nenov, S
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 43 (10-11) : 1203 - 1218
  • [35] Effect of delay in a Lotka-Volterra type predator-prey model with a transmissible disease in the predator species
    Haque, Mainul
    Sarwardi, Sahabuddin
    Preston, Simon
    Venturino, Ezio
    MATHEMATICAL BIOSCIENCES, 2011, 234 (01) : 47 - 57
  • [36] Stability analysis of periodic solutions to the nonstandard discretized model of the Lotka-Volterra predator-prey system
    Erjaee, GH
    Dannan, FM
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (12): : 4301 - 4308
  • [37] Global behavior of solutions in a Lotka-Volterra predator-prey model with prey-stage structure
    Fu, Shengmao
    Zhang, Lina
    Hu, Ping
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (05) : 2027 - 2045
  • [38] Dynamic Analysis of Stochastic Lotka-Volterra Predator-Prey Model with Discrete Delays and Feedback Control
    Liu, Jinlei
    Zhao, Wencai
    COMPLEXITY, 2019, 2019
  • [39] ON A MULTI-DELAY LOTKA-VOLTERRA PREDATOR-PREY MODEL WITH FEEDBACK CONTROLS AND PREY DIFFUSION
    王长有
    李楠
    周钰谦
    蒲兴成
    李锐
    Acta Mathematica Scientia(English Series), 2019, 39 (02) : 429 - 448
  • [40] On a Multi-Delay Lotka-Volterra Predator-Prey Model with Feedback Controls and Prey Diffusion
    Changyou Wang
    Nan Li
    Yuqian Zhou
    Xingcheng Pu
    Rui Li
    Acta Mathematica Scientia, 2019, 39 : 429 - 448