Analysis of a spatial Lotka-Volterra model with a finite range predator-prey interaction

被引:9
|
作者
Brigatti, E. [1 ,2 ]
Nunez-Lopez, M. [3 ]
Oliva, M. [4 ]
机构
[1] Univ Fed Fluminense, Inst Cincias Exatas, Volta Redonda, RJ, Brazil
[2] Univ Fed Fluminense, Inst Fis, BR-24210340 Niteroi, RJ, Brazil
[3] Inst Mexicano Petr, Mexico City 07730, DF, Mexico
[4] Univ La Habana, Fac Fis, Havana 10400, Cuba
来源
EUROPEAN PHYSICAL JOURNAL B | 2011年 / 81卷 / 03期
关键词
PATTERN-FORMATION; SIMILARITY; DYNAMICS; SYSTEM; COMPETITION; SPECIATION;
D O I
10.1140/epjb/e2011-10826-6
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We perform an analysis of a recent spatial version of the classical Lotka-Volterra model, where a finite scale controls individuals' interaction. We study the behavior of the predator-prey dynamics in physical spaces higher than one, showing how spatial patterns can emerge for some values of the interaction range and of the diffusion parameter.
引用
收藏
页码:321 / 326
页数:6
相关论文
共 50 条
  • [21] Influence of predator mutual interference and prey refuge on Lotka-Volterra predator-prey dynamics
    Chen, Liujuan
    Chen, Fengde
    Wang, Yiqin
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (11) : 3174 - 3180
  • [22] Traveling waves for a periodic Lotka-Volterra predator-prey system
    Wang, Xinjian
    Lin, Guo
    APPLICABLE ANALYSIS, 2019, 98 (14) : 2619 - 2638
  • [23] Impulsive control of uncertain Lotka-Volterra predator-prey system
    Li, Dong
    Wang, Shilong
    Zhang, Xiaohong
    Yang, Dan
    CHAOS SOLITONS & FRACTALS, 2009, 41 (04) : 1572 - 1577
  • [24] Bifurcations in a discrete time Lotka-Volterra predator-prey system
    Liu, Xiaoli
    Xiao, Dongmei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2006, 6 (03): : 559 - 572
  • [25] Allee Effects in Delayed Lotka-Volterra Predator-Prey System
    Guo, Jianjun
    Li, Weide
    PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II, 2010, : 157 - 161
  • [26] Persistence and Stochastic Extinction in a Lotka-Volterra Predator-Prey Stochastically Perturbed Model
    Shaikhet, Leonid
    Korobeinikov, Andrei
    MATHEMATICS, 2024, 12 (10)
  • [27] Bifurcations and Marotto's chaos of a discrete Lotka-Volterra predator-prey model
    Li, Yanan
    Liu, Lingling
    Chen, Yujiang
    Yu, Zhiheng
    PHYSICA D-NONLINEAR PHENOMENA, 2025, 472
  • [28] Permanence and global attractivity in a discrete Lotka-Volterra predator-prey model with delays
    Changjin Xu
    Yusen Wu
    Lin Lu
    Advances in Difference Equations, 2014
  • [29] The effects of diffusion on the dynamics of a Lotka-Volterra predator-prey model with a protection zone
    Li, Shanbing
    Wu, Jianhua
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (06)
  • [30] The effects of diffusion on the dynamics of a Lotka-Volterra predator-prey model with a protection zone
    Shanbing Li
    Jianhua Wu
    Calculus of Variations and Partial Differential Equations, 2022, 61