Discovery of peculiar radio morphologies with ASKAP using unsupervised machine learning

被引:5
|
作者
Gupta, Nikhel [1 ]
Minh Huynh [1 ,2 ]
Norris, Ray P. [3 ,4 ]
Wang, X. Rosalind [3 ]
Hopkins, Andrew M. [3 ,5 ]
Andernach, Heinz [6 ]
Koribalski, Barbel S. [3 ,4 ]
Galvin, Tim J. [7 ]
机构
[1] CSIRO, Space & Astron, POB 1130, Bentley, WA 6102, Australia
[2] Univ Western Australia, Int Ctr Radio Astron Res ICRAR, M468,35 Stirling Highway, Crawley, WA 6009, Australia
[3] Western Sydney Univ, Locked Bag 1797, Penrith, NSW 2751, Australia
[4] CSIRO, Space & Astron, POB 76, Epping, NSW 1710, Australia
[5] Macquarie Univ, Australian Astron Opt, 105 Delhi Rd, N Ryde, NSW 2113, Australia
[6] Univ Guanajuato, DCNE, Dept Astron, Cjon Jalisco S-N, Guanajuato 36023, Mexico
[7] Curtin Univ, Int Ctr Radio Astron Res, Bentley, WA 6102, Australia
关键词
galaxies; active; peculiar; radio continuum; Galaxy; evolution; methods; data analysis; STAR-FORMATION RATE; GALAXY CLUSTERS; SOURCE CATALOG; WIDE-FIELD; SKY; CLASSIFICATION; LUMINOSITY; EMISSION; COMPACT; SCIENCE;
D O I
10.1017/pasa.2022.44
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a set of peculiar radio sources detected using an unsupervised machine learning method. We use data from the Australian Square Kilometre Array Pathfinder (ASKAP) telescope to train a self-organizing map (SOM). The radio maps from three ASKAP surveys, Evolutionary Map of Universe pilot survey (EMU-PS), Deep Investigation of Neutral Gas Origins pilot survey (DINGO), and Survey With ASKAP of GAMA-09 + X-ray (SWAG-X), are used to search for the rarest or unknown radio morphologies. We use an extension of the SOM algorithm that implements rotation and flipping invariance on astronomical sources. The SOM is trained using the images of all 'complex' radio sources in the EMU-PS which we define as all sources catalogued as 'multi-component'. The trained SOM is then used to estimate a similarity score for complex sources in all surveys. We select 0.5% of the sources that are most complex according to the similarity metric and visually examine them to find the rarest radio morphologies. Among these, we find two new odd radio circle (ORC) candidates and five other peculiar morphologies. We discuss multiwavelength properties and the optical/infrared counterparts of selected peculiar sources. In addition, we present examples of conventional radio morphologies including: diffuse emission from galaxy clusters, and resolved, bent-tailed, and FR-I and FR-II type radio galaxies. We discuss the overdense environment that may be the reason behind the circular shape of ORC candidates.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Ranking online retailers using unsupervised machine learning
    Sharma, Himanshu
    Anubha, Anubha
    [J]. OPSEARCH, 2024,
  • [32] Unsupervised Machine Learning for the Discovery of Latent Clusters in COVID-19 Patients Using Electronic Health Records
    Cui, Wanting
    Robins, Daniel
    Finkelstein, Joseph
    [J]. IMPORTANCE OF HEALTH INFORMATICS IN PUBLIC HEALTH DURING A PANDEMIC, 2020, 272 : 1 - 4
  • [33] Improving knowledge discovery using domain knowledge in unsupervised learning
    Béjar, J
    [J]. MACHINE LEARNING: ECML 2000, 2000, 1810 : 47 - 54
  • [34] Accelerating materials discovery using machine learning
    Yongfei Juan
    Yongbing Dai
    Yang Yang
    Jiao Zhang
    [J]. Journal of Materials Science & Technology, 2021, 79 (20) : 178 - 190
  • [35] Accelerating materials discovery using machine learning
    Juan, Yongfei
    Dai, Yongbing
    Yang, Yang
    Zhang, Jiao
    [J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 79 : 178 - 190
  • [36] Materials discovery and design using machine learning
    Liu, Yue
    Zhao, Tianlu
    Ju, Wangwei
    Shi, Siqi
    [J]. JOURNAL OF MATERIOMICS, 2017, 3 (03) : 159 - 177
  • [37] Discovery of a new extragalactic circular radio source with ASKAP: ORC J0102-2450
    Koribalski, Barbel S.
    Norris, Ray P.
    Andernach, Heinz
    Rudnick, Lawrence
    Shabala, Stanislav
    Filipovic, Miroslav
    Lenc, Emil
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 505 (01) : L11 - L15
  • [38] Cataloguing the radio-sky with unsupervised machine learning: a new approach for the SKA era
    Galvin, T. J.
    Huynh, M. T.
    Norris, R. P.
    Wang, X. R.
    Hopkins, E.
    Polsterer, K.
    Ralph, N. O.
    O'Brien, A. N.
    Heald, G. H.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 497 (03) : 2730 - 2758
  • [39] Melt Instability Identification Using Unsupervised Machine Learning Algorithms
    Gansen, Alex
    Hennicker, Julian
    Sill, Clemens
    Dheur, Jean
    Hale, Jack S. S.
    Baller, Jorg
    [J]. MACROMOLECULAR MATERIALS AND ENGINEERING, 2023, 308 (06)
  • [40] Tracking Pyrometeors With Meteorological Radar Using Unsupervised Machine Learning
    McCarthy, N. F.
    Guyot, A.
    Protat, A.
    Dowdy, A. J.
    McGowan, H.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (08)