An augmented penalty function method with penalty parameter updates for nonconvex optimization

被引:11
|
作者
Burachik, Regina S. [1 ]
Kaya, C. Yalcin [1 ]
机构
[1] Univ S Australia, Sch Math & Stat, Adelaide, SA 5095, Australia
关键词
Duality scheme; Penalty method; Augmented Lagrangian; Nonconvex optimization; Nonsmooth optimization; Kissing number problem; MODIFIED SUBGRADIENT ALGORITHM; HARD-SPHERES PROBLEMS; IMPLEMENTATION; DUALITY;
D O I
10.1016/j.na.2011.03.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an augmented Lagrangian scheme for a general optimization problem, we use an epsilon subgradient step for improving the dual function. This can be seen as an update for an augmented penalty method, which is more stable because it does not force the penalty parameter to tend to infinity. We establish for this update primal-dual convergence for our augmented penalty method. As illustration, we apply our method to the test-bed kissing number problem. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1158 / 1167
页数:10
相关论文
共 50 条