A Note on Optimization Using the Augmented Penalty Function

被引:0
|
作者
Raghavendra, V. [1 ]
Rao, K. S. P. [2 ]
机构
[1] Indian Inst Technol, Dept Math, Kanpur 208016, Uttar Pradesh, India
[2] Indian Inst Technol, Dept Elect Engn, Kanpur 208016, Uttar Pradesh, India
关键词
D O I
10.1007/BF00935111
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The augmented penalty function is used to solve optimization problems with constraints and for faster convergence while adopting gradient techniques. In this note, an attempt is made to show that, if x* is an element of S maximizes the function W(x, lambda, K) = f(x) - Sigma(n)(j=1) lambda(j)C(j)(x) - K Sigma(n)(j=1) C(j)(2)(x), then x* maximizes f(x) over all those x is an element of S such that C(j)(x) <= C(j), j = 1, 2, ... , n, under the assumptions that the lambda(j)'s and k are nonnegative, real numbers. Here, W(x, lambda, K), f(x), and C(j)(x), j = 1, 2, ... , n, are real-valued functions and C(j)(x) >= 0 for j = 1, 2, ... , n and for all x. The above result is generalized considering a more general form of the augmented penalty function.
引用
收藏
页码:320 / 324
页数:5
相关论文
共 50 条
  • [1] An augmented penalty function method with penalty parameter updates for nonconvex optimization
    Burachik, Regina S.
    Kaya, C. Yalcin
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (03) : 1158 - 1167
  • [2] Inexact Exponential Penalty Function with the Augmented Lagrangian for Multiobjective Optimization Algorithms
    Tougma, Appolinaire
    Some, Kounhinir
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2024, 2024
  • [3] CONSTRAINED OPTIMIZATION USING A NONDIFFERENTIABLE PENALTY FUNCTION
    CONN, AR
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (04) : 760 - 784
  • [4] AUGMENTED LAGRANGIAN OBJECTIVE PENALTY FUNCTION
    Meng, Zhiqing
    Shen, Rui
    Dang, Chuangyin
    Jiang, Min
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2015, 36 (11) : 1471 - 1492
  • [5] Convergence Results of an Augmented Lagrangian Method Using the Exponential Penalty Function
    Nélida Echebest
    María Daniela Sánchez
    María Laura Schuverdt
    [J]. Journal of Optimization Theory and Applications, 2016, 168 : 92 - 108
  • [6] Convergence Results of an Augmented Lagrangian Method Using the Exponential Penalty Function
    Echebest, Nelida
    Daniela Sanchez, Maria
    Laura Schuverdt, Maria
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 168 (01) : 92 - 108
  • [7] BSS method using exterior penalty function optimization
    Liu, Jianting
    Li, Rui
    Wang, Fasong
    [J]. Journal of Computational Information Systems, 2010, 6 (03): : 803 - 812
  • [8] Constrained Global Optimization Using a New Exact Penalty Function
    Zheng, Fangying
    Zhang, Liansheng
    [J]. ADVANCES IN GLOBAL OPTIMIZATION, 2015, 95 : 68 - 75
  • [9] Evaluation of Penalty Function Methods for Constrained Optimization Using Particle Swarm Optimization
    Vardhan, L. Ashoka
    Vasan, Arunachalam
    [J]. 2013 IEEE SECOND INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP), 2013, : 487 - 492
  • [10] Solving Nonlinear Constrained Optimization Problems by Invasive Weed Optimization using Penalty Function
    Naidu, Y. Ramu
    Ojha, A. K.
    [J]. SOUVENIR OF THE 2014 IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE (IACC), 2014, : 1326 - 1330