A Note on Optimization Using the Augmented Penalty Function

被引:0
|
作者
Raghavendra, V. [1 ]
Rao, K. S. P. [2 ]
机构
[1] Indian Inst Technol, Dept Math, Kanpur 208016, Uttar Pradesh, India
[2] Indian Inst Technol, Dept Elect Engn, Kanpur 208016, Uttar Pradesh, India
关键词
D O I
10.1007/BF00935111
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The augmented penalty function is used to solve optimization problems with constraints and for faster convergence while adopting gradient techniques. In this note, an attempt is made to show that, if x* is an element of S maximizes the function W(x, lambda, K) = f(x) - Sigma(n)(j=1) lambda(j)C(j)(x) - K Sigma(n)(j=1) C(j)(2)(x), then x* maximizes f(x) over all those x is an element of S such that C(j)(x) <= C(j), j = 1, 2, ... , n, under the assumptions that the lambda(j)'s and k are nonnegative, real numbers. Here, W(x, lambda, K), f(x), and C(j)(x), j = 1, 2, ... , n, are real-valued functions and C(j)(x) >= 0 for j = 1, 2, ... , n and for all x. The above result is generalized considering a more general form of the augmented penalty function.
引用
收藏
页码:320 / 324
页数:5
相关论文
共 50 条
  • [21] Constrained particle swarm optimization using exterior penalty function and swarm activity
    Tokyo Metropolitan University, 1-1, Minamiosawa, Hachioji, Tokyo 192-0397, Japan
    [J]. IEEJ Trans. Electron. Inf. Syst, 2008, 3 (517-518):
  • [22] A Dual Decomposition Algorithm for Separable Nonconvex Optimization Using the Penalty Function Framework
    Quoc Tran Dinh
    Necoara, Ion
    Diehl, Moritz
    [J]. 2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 2372 - 2377
  • [23] SOLVING CONSTRAINED OPTIMIZATION PROBLEMS USING PROBABILITY COLLECTIVES AND A PENALTY FUNCTION APPROACH
    Kulkarni, Anand J.
    Tai, K.
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2011, 10 (04) : 445 - 470
  • [24] CONSTRAINED ARRAY OPTIMIZATION BY PENALTY FUNCTION TECHNIQUES
    WINKLER, LP
    SCHWARTZ, M
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1974, 55 (05): : 1042 - 1048
  • [25] Collaborative Optimization Algorithm Based on The Penalty Function
    Jiang, Zhixia
    Meng, Pinchao
    Li, Yanzhong
    Yin, Weishi
    [J]. MECHANICAL, ELECTRONIC AND ENGINEERING TECHNOLOGIES (ICMEET 2014), 2014, 538 : 447 - 450
  • [26] NEW AUGMENTED PENALTY FUNCTION TECHNIQUE FOR OPTIMAL-CONTROL PROBLEMS
    CONNOR, MA
    VLACH, M
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1977, 21 (01) : 39 - 49
  • [27] A note on a penalty function approach for solving bilevel linear programs
    Campêlo, M
    Dantas, S
    Scheimberg, S
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2000, 16 (03) : 245 - 255
  • [28] A Note on a Penalty Function Approach for Solving Bilevel Linear Programs
    Manoel Campelo
    Simone Dantas
    Susana Scheimberg
    [J]. Journal of Global Optimization, 2000, 16 : 245 - 255
  • [29] Solving constrained optimization problems with new penalty function approach using genetic algorithms
    Yu, XH
    Zheng, WX
    Wu, BL
    Yao, X
    [J]. PROGRESS IN CONNECTIONIST-BASED INFORMATION SYSTEMS, VOLS 1 AND 2, 1998, : 416 - 419
  • [30] Exponential penalty function formulation for multilevel optimization using the analytical target cascading framework
    DorMohammadi, S.
    Rais-Rohani, M.
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2013, 47 (04) : 599 - 612