A Dual Decomposition Algorithm for Separable Nonconvex Optimization Using the Penalty Function Framework

被引:0
|
作者
Quoc Tran Dinh [1 ,2 ,4 ]
Necoara, Ion [3 ]
Diehl, Moritz [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn ESAT SCD, Leuven, Belgium
[2] Katholieke Univ Leuven, Optimizat Engn Ctr OPTEC, Leuven, Belgium
[3] Univ Politehn Bucuresti, Automat Control & Syst Engn Dept, Bucharest, Romania
[4] Ecole Polytech Fed Lausanne, Lab Informat & Inference Syst LIONS, Lausanne, Switzerland
关键词
MODEL-PREDICTIVE CONTROL;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a dual decomposition method for solving separable nonconvex optimization problems that arise e.g. in distributed model predictive control over networks. We first derive a new sequential convex programming (SCP) scheme based on penalty function approach to handle nonconvexity. Then, we combine this SCP scheme with a dual decomposition algorithm to obtain a two-level decomposition algorithm. The global convergence of this algorithm is analyzed under standard assumptions. Some preliminary numerical results are also given to illustrate the theoretical results.
引用
收藏
页码:2372 / 2377
页数:6
相关论文
共 50 条