Penalty Dual Decomposition Method for Nonsmooth Nonconvex Optimization-Part II: Applications

被引:18
|
作者
Shi, Qingjiang [1 ,2 ]
Hong, Mingyi [3 ]
Fu, Xiao [4 ]
Chang, Tsung-Hui [5 ]
机构
[1] Tongji Univ, Sch Software Engn, Shanghai 201804, Peoples R China
[2] Shenzhen Res Inst Big Data, Shenzhen 518172, Peoples R China
[3] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55454 USA
[4] Oregon State Univ, Sch EECS, Corvallis, OR 97330 USA
[5] Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen 518172, Peoples R China
基金
美国国家科学基金会; 国家重点研发计划;
关键词
Signal processing algorithms; Relays; Couplings; Multicast algorithms; Array signal processing; Optimization; Convergence; Penalty dual decomposition; multicast beamforming; sum-rate maximization; matrix factorization; LINEAR TRANSCEIVER DESIGN; WAVE-FORM DESIGN; COMPONENT ANALYSIS; CONSTANT MODULUS; RELAY; MINIMIZATION; LOCALIZATION; ALGORITHMS; SERVICE;
D O I
10.1109/TSP.2020.3001397
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In Part I of this paper, we proposed and analyzed a novel algorithmic framework, termed penalty dual decomposition (PDD), for the minimization of a nonconvex nonsmooth objective function, subject to difficult coupling constraints. Part II of this paper is devoted to evaluation of the proposed methods in the following three timely applications, ranging from communication networks to data analytics: i) the max-min rate fair multicast beamforming problem; ii) the sum-rate maximization problem in multi-antenna relay broadcast networks; and iii) the volume-min based structured matrix factorization problem. By exploiting the structure of the aforementioned problems, we show that effective algorithms for all these problems can be devised under the PDD framework. Unlike the state-of-the-art algorithms, the PDD-based algorithms are proven to achieve convergence to stationary solutions of the aforementioned nonconvex problems. Numerical results validate the efficacy of the proposed schemes.
引用
收藏
页码:4242 / 4257
页数:16
相关论文
共 50 条
  • [1] Penalty Dual Decomposition Method for Nonsmooth Nonconvex Optimization-Part I: Algorithms and Convergence Analysis
    Shi, Qingjiang
    Hong, Mingyi
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 4108 - 4122
  • [2] Parallel and Distributed Methods for Constrained Nonconvex Optimization-Part II: Applications in Communications and Machine Learning
    Scutari, Gesualdo
    Facchinei, Francisco
    Lampariello, Lorenzo
    Sardellitti, Stefania
    Song, Peiran
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (08) : 1945 - 1960
  • [3] The exact penalty map for nonsmooth and nonconvex optimization
    Burachik, Regina S.
    Iusem, Alfredo N.
    Melo, Jefferson G.
    [J]. OPTIMIZATION, 2015, 64 (04) : 717 - 738
  • [4] A Dual Decomposition Algorithm for Separable Nonconvex Optimization Using the Penalty Function Framework
    Quoc Tran Dinh
    Necoara, Ion
    Diehl, Moritz
    [J]. 2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 2372 - 2377
  • [5] Subgradient Method for Nonconvex Nonsmooth Optimization
    A. M. Bagirov
    L. Jin
    N. Karmitsa
    A. Al Nuaimat
    N. Sultanova
    [J]. Journal of Optimization Theory and Applications, 2013, 157 : 416 - 435
  • [6] Subgradient Method for Nonconvex Nonsmooth Optimization
    Bagirov, A. M.
    Jin, L.
    Karmitsa, N.
    Al Nuaimat, A.
    Sultanova, N.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 157 (02) : 416 - 435
  • [7] Parallel and Distributed Methods for Constrained Nonconvex Optimization-Part I: Theory
    Scutari, Gesualdo
    Facchinei, Francisco
    Lampariello, Lorenzo
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (08) : 1929 - 1944
  • [8] Bundle Method for Nonconvex Nonsmooth Constrained Optimization
    Minh Ngoc Dao
    [J]. JOURNAL OF CONVEX ANALYSIS, 2015, 22 (04) : 1061 - 1090
  • [9] A Proximal Bundle Method with Exact Penalty Technique and Bundle Modification Strategy for Nonconvex Nonsmooth Constrained Optimization
    Wang, Xiaoliang
    Pang, Liping
    Wu, Qi
    [J]. ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2022, 39 (02)
  • [10] Perturbed proximal primal–dual algorithm for nonconvex nonsmooth optimization
    Davood Hajinezhad
    Mingyi Hong
    [J]. Mathematical Programming, 2019, 176 : 207 - 245