The exact penalty map for nonsmooth and nonconvex optimization

被引:6
|
作者
Burachik, Regina S. [1 ]
Iusem, Alfredo N. [2 ]
Melo, Jefferson G. [3 ]
机构
[1] Univ S Australia, Sch Informat Technol & Math Sci, Mawson Lakes, Australia
[2] Inst Nacl Matemat Pura & Aplicada, IMPA, Rio De Janeiro, RJ, Brazil
[3] Univ Fed Goias, Inst Matemat & Estat, Goiania, Go, Brazil
关键词
exact penalty; nonsmooth optimization; duality scheme; Banach spaces; augmented Lagrangians; nonconvex optimization; 90C26; 65K10; 49M29; MODIFIED SUBGRADIENT ALGORITHM; AUGMENTED LAGRANGIAN APPROACH; DUAL PROBLEMS; PENALIZATION;
D O I
10.1080/02331934.2013.830117
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Augmented Lagrangian duality provides zero duality gap and saddle point properties for nonconvex optimization. On the basis of this duality, subgradient-like methods can be applied to the (convex) dual of the original problem. These methods usually recover the optimal value of the problem, but may fail to provide a primal solution. We prove that the recovery of a primal solution by such methods can be characterized in terms of (i) the differentiability properties of the dual function and (ii) the exact penalty properties of the primal-dual pair. We also connect the property of finite termination with exact penalty properties of the dual pair. In order to establish these facts, we associate the primal-dual pair to a penalty map. This map, which we introduce here, is a convex and globally Lipschitz function and its epigraph encapsulates information on both primal and dual solution sets.
引用
收藏
页码:717 / 738
页数:22
相关论文
共 50 条
  • [1] Exact Penalty Methods for Nonsmooth Optimization
    Polyakova, Lyudmila
    Karelin, Vladimir
    [J]. 2014 20TH INTERNATIONAL WORKSHOP ON BEAM DYNAMICS AND OPTIMIZATION (BDO), 2014, : 138 - 139
  • [2] A Proximal Bundle Method with Exact Penalty Technique and Bundle Modification Strategy for Nonconvex Nonsmooth Constrained Optimization
    Wang, Xiaoliang
    Pang, Liping
    Wu, Qi
    [J]. ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2022, 39 (02)
  • [3] A class of exact penalty functions and penalty algorithms for nonsmooth constrained optimization problems
    Liu, Qian
    Xu, Yuqing
    Zhou, Yang
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2020, 76 (04) : 745 - 768
  • [4] A class of exact penalty functions and penalty algorithms for nonsmooth constrained optimization problems
    Qian Liu
    Yuqing Xu
    Yang Zhou
    [J]. Journal of Global Optimization, 2020, 76 : 745 - 768
  • [5] Distributed nonsmooth optimization with different local constraints via exact penalty
    Liu, Shuyu
    Liang, Shu
    Hong, Yiguang
    [J]. 2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 1150 - 1155
  • [6] Shape Derivative for Penalty-Constrained Nonsmooth–Nonconvex Optimization: Cohesive Crack Problem
    Victor A. Kovtunenko
    Karl Kunisch
    [J]. Journal of Optimization Theory and Applications, 2022, 194 : 597 - 635
  • [7] Penalty Dual Decomposition Method for Nonsmooth Nonconvex Optimization-Part II: Applications
    Shi, Qingjiang
    Hong, Mingyi
    Fu, Xiao
    Chang, Tsung-Hui
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 4242 - 4257
  • [8] Deterministic Nonsmooth Nonconvex Optimization
    Jordan, Michael I.
    Kornowski, Guy
    Lin, Tianyi
    Shamir, Ohad
    Zampetakis, Manolis
    [J]. THIRTY SIXTH ANNUAL CONFERENCE ON LEARNING THEORY, VOL 195, 2023, 195
  • [9] A Penalty Approach for Solving Nonsmooth and Nonconvex MINLP Problems
    Costa, M. Fernanda P.
    Rocha, Ana Maria A. C.
    Fernandes, Edite M. G. P.
    [J]. OPERATIONAL RESEARCH, 2018, 223 : 39 - 55
  • [10] Shape Derivative for Penalty-Constrained Nonsmooth-Nonconvex Optimization: Cohesive Crack Problem
    Kovtunenko, Victor A.
    Kunisch, Karl
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 194 (02) : 597 - 635