A connection between Abel and pFq hypergeometric differential equations

被引:2
|
作者
Cheb-Terrab, ES
机构
[1] Simon Fraser Univ, CECM, Dept Math & Stat, Burnaby, BC V5A 1S6, Canada
[2] Maplesoft, Waterloo, ON N2V 1K8, Canada
关键词
D O I
10.1017/S0956792505005851
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a recent paper, a new three-parameter class of Abel type equations, so-called AIR, all of whose members can be mapped into Riccati equations, is shown. Most of the Abel equations with solution presented in the literature belong to the AIR class. Three canonical forms were shown to generate this class, according to the roots of a cubic. In this paper, a connection between those canonical forms and the differential equations for the hypergeometric functions F-2(1), F-1(1) and F-0(1) is unveiled. This connection provides a closed form F-p(q) solution for all Abel equations of the AIR class.
引用
收藏
页码:53 / 63
页数:11
相关论文
共 50 条
  • [1] On solution of multidimensional hypergeometric integral equations of the Abel type
    Kilbas, AA
    Raina, RK
    Saigo, M
    Srivastava, HM
    [J]. DOKLADY AKADEMII NAUK BELARUSI, 1999, 43 (02): : 23 - 26
  • [2] Abel's differential equations
    Green, ML
    Griffiths, PA
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2002, 28 (02): : 329 - 351
  • [3] Friedman versus Abel equations: A connection unraveled
    Yurov, A. V.
    Yurov, V. A.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (08)
  • [5] Rational solutions of Abel differential equations
    Bravo, J. L.
    Calderon, L. A.
    Fernandez, M.
    Ojeda, I
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 515 (01)
  • [6] On the integrable rational Abel differential equations
    Gine, Jaume
    Llibre, Jaume
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2010, 61 (01): : 33 - 39
  • [7] ON THE ABEL DIFFERENTIAL EQUATIONS OF THIRD KIND
    Oliveira, Regilene
    Valls, Claudia
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (05): : 1821 - 1834
  • [8] Periodic solutions of Abel differential equations
    Alwash, M. A. M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 329 (02) : 1161 - 1169
  • [9] On the integrable rational Abel differential equations
    Jaume Giné
    Jaume Llibre
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2010, 61 : 33 - 39
  • [10] On some differential transformations of hypergeometric equations
    Hounkonnou, M. N.
    Ronveaux, A.
    [J]. XXXTH INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS (ICGTMP) (GROUP30), 2015, 597