Stochastic quantization on Lorentzian manifolds

被引:7
|
作者
Kuipers, Folkert [1 ]
机构
[1] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England
基金
英国科学技术设施理事会;
关键词
Differential and Algebraic Geometry; Models of Quantum Gravity; Stochastic Processes; SCHRODINGER-EQUATION; MECHANICS; FIELD; CALCULUS; SYSTEMS;
D O I
10.1007/JHEP05(2021)028
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We embed Nelson's theory of stochastic quantization in the Schwartz-Meyer second order geometry framework. The result is a non-perturbative theory of quantum mechanics on (pseudo-)Riemannian manifolds. Within this approach, we derive stochastic differential equations for massive spin-0 test particles charged under scalar potentials, vector potentials and gravity. Furthermore, we derive the associated Schrodinger equation. The resulting equations show that massive scalar particles must be conformally coupled to gravity in a theory of quantum gravity. We conclude with a discussion of some prospects of the stochastic framework.
引用
收藏
页数:51
相关论文
共 50 条
  • [31] On Lorentzian alpha -Sasakian manifolds
    Taleshian, A.
    Asghari, N.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2012, 4 (03): : 295 - 300
  • [32] On a class of geodesically connected Lorentzian manifolds
    Antonacci, F
    Sampalmieri, R
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 138 (01) : 171 - 187
  • [33] Green Hyperbolic Complexes on Lorentzian Manifolds
    Benini, Marco
    Musante, Giorgio
    Schenkel, Alexander
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 403 (02) : 699 - 744
  • [34] Volume Comparison Theorems for Lorentzian Manifolds
    Paul E. Ehrlich
    Yoon-Tae Jung
    Seon-Bu Kim
    Geometriae Dedicata, 1998, 73 : 39 - 56
  • [35] Lorentzian Manifolds Close to Euclidean Space
    V. N. Berestovskii
    Siberian Mathematical Journal, 2019, 60 : 235 - 248
  • [36] On Lorentzian para-Sasakian manifolds
    Mishra, IK
    Ojha, RH
    GEOMETRY ANALYSIS AND APPLICATIONS, 2001, : 139 - 143
  • [37] Lorentzian manifolds with no null conjugate points
    Gutiérrez, M
    Palomo, FJ
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2004, 137 : 363 - 375
  • [38] Four dimensional Osserman Lorentzian manifolds
    GarciaRio, E
    Kupeli, DN
    NEW DEVELOPMENTS IN DIFFERENTIAL GEOMETRY, 1996, 350 : 201 - 211
  • [39] ON LORENTZIAN TRANS-SASAKIAN MANIFOLDS
    De, U. C.
    De, Krishnendu
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2013, 62 (02): : 37 - 51
  • [40] FINITE VOLUME SCHEMES ON LORENTZIAN MANIFOLDS
    Amorim, Paulo
    LeFloch, Philippe E.
    Okutmustur, Baver
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2008, 6 (04) : 1059 - 1086