Stochastic quantization on Lorentzian manifolds

被引:7
|
作者
Kuipers, Folkert [1 ]
机构
[1] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England
基金
英国科学技术设施理事会;
关键词
Differential and Algebraic Geometry; Models of Quantum Gravity; Stochastic Processes; SCHRODINGER-EQUATION; MECHANICS; FIELD; CALCULUS; SYSTEMS;
D O I
10.1007/JHEP05(2021)028
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We embed Nelson's theory of stochastic quantization in the Schwartz-Meyer second order geometry framework. The result is a non-perturbative theory of quantum mechanics on (pseudo-)Riemannian manifolds. Within this approach, we derive stochastic differential equations for massive spin-0 test particles charged under scalar potentials, vector potentials and gravity. Furthermore, we derive the associated Schrodinger equation. The resulting equations show that massive scalar particles must be conformally coupled to gravity in a theory of quantum gravity. We conclude with a discussion of some prospects of the stochastic framework.
引用
收藏
页数:51
相关论文
共 50 条
  • [21] Geometric symmetries on Lorentzian manifolds
    Saifullah, K.
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2007, 122 (04): : 447 - 457
  • [22] A note on Osserman Lorentzian manifolds
    Blazic, N
    Bokan, N
    Gilkey, P
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1997, 29 : 227 - 230
  • [23] Spacelike surfaces in Lorentzian manifolds
    Elghanmi, R
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1996, 6 (03) : 199 - 218
  • [24] Holonomy groups of Lorentzian manifolds
    Galaev, A. S.
    RUSSIAN MATHEMATICAL SURVEYS, 2015, 70 (02) : 249 - 298
  • [25] LORENTZIAN MANIFOLDS WITH PRINCIPAL CONNECTION
    ROSCA, R
    VANHECKE, L
    ANNALES DE L INSTITUT HENRI POINCARE SECTION A PHYSIQUE THEORIQUE, 1975, 22 (03): : 201 - 216
  • [26] Reductive homogeneous Lorentzian manifolds
    Alekseevsky, Dmitri
    Chrysikos, Ioannis
    Galaev, Anton
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2022, 84
  • [27] η-RICCI SOLITONS IN LORENTZIAN α-MANIFOLDS
    Haseeb, Abdul
    Prasad, Rajendra
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (03): : 713 - 725
  • [28] KILLINGS FIELDS ON LORENTZIAN MANIFOLDS
    FLAHERTY, FJ
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 280 (08): : 517 - 518
  • [29] CONVEX REGIONS OF LORENTZIAN MANIFOLDS
    MASIELLO, A
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1994, 167 : 299 - 322
  • [30] Killing spinors on Lorentzian manifolds
    Bohle, C
    JOURNAL OF GEOMETRY AND PHYSICS, 2003, 45 (3-4) : 285 - 308