Deep Learning with Quantized Neural Networks for Gravitational-wave Forecasting of Eccentric Compact Binary Coalescence

被引:15
|
作者
Wei, Wei [1 ,2 ,3 ]
Huerta, E. A. [1 ,3 ,4 ,5 ,6 ]
Yun, Mengshen [1 ,2 ,7 ]
Loutrel, Nicholas [8 ,9 ]
Shaikh, Md Arif [10 ]
Kumar, Prayush [10 ,11 ]
Haas, Roland [1 ]
Kindratenko, Volodymyr [1 ,2 ,7 ,12 ]
机构
[1] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA
[2] Univ Illinois, NCSA Ctr Artificial Intelligence Innovat, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[4] Argonne Natl Lab, Data Sci & Learning Div, Lemont, IL 60439 USA
[5] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
[6] Univ Illinois, Dept Astron, Urbana, IL 61801 USA
[7] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[8] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[9] Princeton Univ, Princeton Grav Initiat, Princeton, NJ 08544 USA
[10] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560089, Karnataka, India
[11] Cornell Univ, Cornell Ctr Astrophys & Planetary Sci, Ithaca, NY 14853 USA
[12] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA
来源
ASTROPHYSICAL JOURNAL | 2021年 / 919卷 / 02期
基金
美国国家科学基金会;
关键词
HUBBLE CONSTANT; ADVANCED LIGO; GW170817;
D O I
10.3847/1538-4357/ac1121
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present the first application of deep learning forecasting for binary neutron stars, neutron star-black hole systems, and binary black hole mergers that span an eccentricity range e <= 0.9. We train neural networks that describe these astrophysical populations, and then test their performance by injecting simulated eccentric signals in advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) noise available at the Gravitational Wave Open Science Center to (1) quantify how fast neural networks identify these signals before the binary components merge; (2) quantify how accurately neural networks estimate the time to merger once gravitational waves are identified; and (3) estimate the time-dependent sky localization of these events from early detection to merger. Our findings show that deep learning can identify eccentric signals from a few seconds (for binary black holes) up to tens of seconds (for binary neutron stars) prior to merger. A quantized version of our neural networks achieves 4x reduction in model size, and up to 2.5x inference speedup. These novel algorithms may be used to facilitate time-sensitive multimessenger astrophysics observations of compact binaries in dense stellar environments.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Techniques for gravitational-wave detection of compact binary coalescence
    Caudill, Sarah
    [J]. 2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 2633 - 2637
  • [2] Composite gravitational-wave detection of compact binary coalescence
    Cannon, Kipp
    Hanna, Chad
    Keppel, Drew
    Searle, Antony C.
    [J]. PHYSICAL REVIEW D, 2011, 83 (08):
  • [3] Detectability of eccentric compact binary coalescences with advanced gravitational-wave detectors
    Coughlin, M.
    Meyers, P.
    Thrane, E.
    Luo, J.
    Christensen, N.
    [J]. PHYSICAL REVIEW D, 2015, 91 (06):
  • [4] Singular value decomposition applied to compact binary coalescence gravitational-wave signals
    Cannon, Kipp
    Chapman, Adrian
    Hanna, Chad
    Keppel, Drew
    Searle, Antony C.
    Weinstein, Alan J.
    [J]. PHYSICAL REVIEW D, 2010, 82 (04):
  • [5] Applying deep neural networks to the detection and space parameter estimation of compact binary coalescence with a network of gravitational wave detectors
    Fan, XiLong
    Li, Jin
    Li, Xin
    Zhong, YuanHong
    Cao, JunWei
    [J]. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2019, 62 (06)
  • [6] Applying deep neural networks to the detection and space parameter estimation of compact binary coalescence with a network of gravitational wave detectors
    XiLong Fan
    Jin Li
    Xin Li
    YuanHong Zhong
    JunWei Cao
    [J]. Science China Physics, Mechanics & Astronomy, 2019, 62
  • [7] Applying deep neural networks to the detection and space parameter estimation of compact binary coalescence with a network of gravitational wave detectors
    XiLong Fan
    Jin Li
    Xin Li
    YuanHong Zhong
    JunWei Cao
    [J]. Science China(Physics,Mechanics & Astronomy), 2019, (06) : 122 - 129
  • [8] Method to estimate the significance of coincident gravitational-wave observations from compact binary coalescence
    Cannon, Kipp
    Hanna, Chad
    Keppel, Drew
    [J]. PHYSICAL REVIEW D, 2013, 88 (02):
  • [9] Tuning gravitational-wave detector networks to measure compact binary mergers
    Hughes, SA
    [J]. PHYSICAL REVIEW D, 2002, 66 (10)
  • [10] Application of a zero-latency whitening filter to compact binary coalescence gravitational-wave searches
    Tsukada, Leo
    Cannon, Kipp
    Hanna, Chad
    Keppel, Drew
    Meacher, Duncan
    Messick, Cody
    [J]. PHYSICAL REVIEW D, 2018, 97 (10)