Applying deep neural networks to the detection and space parameter estimation of compact binary coalescence with a network of gravitational wave detectors

被引:0
|
作者
XiLong Fan [1 ]
Jin Li [2 ]
Xin Li [2 ]
YuanHong Zhong [3 ]
JunWei Cao [4 ]
机构
[1] Department of Physics and Astronomy, Hubei University of Education
[2] Department of Physics, Chongqing University
[3] College of Communication, Chongqing University
[4] Research Institute of Information Technology, Tsinghua University
基金
中国国家自然科学基金; 中央高校基本科研业务费专项资金资助;
关键词
deep neural networks; advanced LIGO and advanced Virgo coincident detection of gravitational waves; multiple space parameter estimation;
D O I
暂无
中图分类号
P111 [天文仪器]; P142.84 []; TP18 [人工智能理论];
学科分类号
070401 ; 081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we study an application of deep learning to the advanced laser interferometer gravitational wave observatory(LIGO)and advanced Virgo coincident detection of gravitational waves(GWs) from compact binary star mergers. This deep learning method is an extension of the Deep Filtering method used by George and Huerta(2017) for multi-inputs of network detectors.Simulated coincident time series data sets in advanced LIGO and advanced Virgo detectors are analyzed for estimating source luminosity distance and sky location. As a classifier, our deep neural network(DNN) can effectively recognize the presence of GW signals when the optimal signal-to-noise ratio(SNR) of network detectors ≥ 9. As a predictor, it can also effectively estimate the corresponding source space parameters, including the luminosity distance D, right ascension α, and declination δ of the compact binary star mergers. When the SNR of the network detectors is greater than 8, their relative errors are all less than 23%.Our results demonstrate that Deep Filtering can process coincident GW time series inputs and perform effective classification and multiple space parameter estimation. Furthermore, we compare the results obtained from one, two, and three network detectors;these results reveal that a larger number of network detectors results in a better source location.
引用
收藏
页码:122 / 129
页数:8
相关论文
共 37 条
  • [1] Applying deep neural networks to the detection and space parameter estimation of compact binary coalescence with a network of gravitational wave detectors
    Fan, XiLong
    Li, Jin
    Li, Xin
    Zhong, YuanHong
    Cao, JunWei
    [J]. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2019, 62 (06)
  • [2] Applying deep neural networks to the detection and space parameter estimation of compact binary coalescence with a network of gravitational wave detectors
    XiLong Fan
    Jin Li
    Xin Li
    YuanHong Zhong
    JunWei Cao
    [J]. Science China Physics, Mechanics & Astronomy, 2019, 62
  • [3] Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network
    Aasi, J.
    Abadie, J.
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Abernathy, M.
    Accadia, T.
    Acernese, F.
    Adams, C.
    Adams, T.
    Addesso, P.
    Adhikari, R.
    Affeldt, C.
    Agathos, M.
    Agatsuma, K.
    Ajith, P.
    Allen, B.
    Allocca, A.
    Ceron, E. Amador
    Amariutei, D.
    Anderson, S. B.
    Anderson, W. G.
    Arai, K.
    Araya, M. C.
    Ast, S.
    Aston, S. M.
    Astone, P.
    Atkinson, D.
    Aufmuth, P.
    Aulbert, C.
    Aylott, B. E.
    Babak, S.
    Baker, P.
    Ballardin, G.
    Ballmer, S.
    Bao, Y.
    Barayoga, J. C. B.
    Barker, D.
    Barone, F.
    Barr, B.
    Barsotti, L.
    Barsuglia, M.
    Barton, M. A.
    Bartos, I.
    Bassiri, R.
    Bastarrika, M.
    Basti, A.
    Batch, J.
    Bauchrowitz, J.
    Bauer, Th. S.
    [J]. PHYSICAL REVIEW D, 2013, 88 (06)
  • [4] Deep Learning with Quantized Neural Networks for Gravitational-wave Forecasting of Eccentric Compact Binary Coalescence
    Wei, Wei
    Huerta, E. A.
    Yun, Mengshen
    Loutrel, Nicholas
    Shaikh, Md Arif
    Kumar, Prayush
    Haas, Roland
    Kindratenko, Volodymyr
    [J]. ASTROPHYSICAL JOURNAL, 2021, 919 (02):
  • [5] Composite gravitational-wave detection of compact binary coalescence
    Cannon, Kipp
    Hanna, Chad
    Keppel, Drew
    Searle, Antony C.
    [J]. PHYSICAL REVIEW D, 2011, 83 (08):
  • [6] Techniques for gravitational-wave detection of compact binary coalescence
    Caudill, Sarah
    [J]. 2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 2633 - 2637
  • [7] Importance of eccentricities in parameter estimation of compact binary inspirals with decihertz gravitational-wave detectors
    Choi, Han Gil
    Yang, Tao
    Lee, Hyung Mok
    [J]. PHYSICAL REVIEW D, 2024, 110 (02)
  • [8] Gravitational lensing effects on parameter estimation in gravitational wave detection with advanced detectors
    Cao, Zhoujian
    Li, Li-Fang
    Wang, Yan
    [J]. PHYSICAL REVIEW D, 2014, 90 (06):
  • [9] Parameter estimation for binary black holes with networks of third-generation gravitational-wave detectors
    Vitale, Salvatore
    Evans, Matthew
    [J]. PHYSICAL REVIEW D, 2017, 95 (06)
  • [10] Synergy between ground- and space-based gravitational-wave detectors for estimation of binary coalescence parameters
    Nair, Remya
    Jhingan, Sanjay
    Tanaka, Takahiro
    [J]. PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2016, 2016 (05):