Deep Learning with Quantized Neural Networks for Gravitational-wave Forecasting of Eccentric Compact Binary Coalescence

被引:15
|
作者
Wei, Wei [1 ,2 ,3 ]
Huerta, E. A. [1 ,3 ,4 ,5 ,6 ]
Yun, Mengshen [1 ,2 ,7 ]
Loutrel, Nicholas [8 ,9 ]
Shaikh, Md Arif [10 ]
Kumar, Prayush [10 ,11 ]
Haas, Roland [1 ]
Kindratenko, Volodymyr [1 ,2 ,7 ,12 ]
机构
[1] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA
[2] Univ Illinois, NCSA Ctr Artificial Intelligence Innovat, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[4] Argonne Natl Lab, Data Sci & Learning Div, Lemont, IL 60439 USA
[5] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
[6] Univ Illinois, Dept Astron, Urbana, IL 61801 USA
[7] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[8] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[9] Princeton Univ, Princeton Grav Initiat, Princeton, NJ 08544 USA
[10] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560089, Karnataka, India
[11] Cornell Univ, Cornell Ctr Astrophys & Planetary Sci, Ithaca, NY 14853 USA
[12] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA
来源
ASTROPHYSICAL JOURNAL | 2021年 / 919卷 / 02期
基金
美国国家科学基金会;
关键词
HUBBLE CONSTANT; ADVANCED LIGO; GW170817;
D O I
10.3847/1538-4357/ac1121
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present the first application of deep learning forecasting for binary neutron stars, neutron star-black hole systems, and binary black hole mergers that span an eccentricity range e <= 0.9. We train neural networks that describe these astrophysical populations, and then test their performance by injecting simulated eccentric signals in advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) noise available at the Gravitational Wave Open Science Center to (1) quantify how fast neural networks identify these signals before the binary components merge; (2) quantify how accurately neural networks estimate the time to merger once gravitational waves are identified; and (3) estimate the time-dependent sky localization of these events from early detection to merger. Our findings show that deep learning can identify eccentric signals from a few seconds (for binary black holes) up to tens of seconds (for binary neutron stars) prior to merger. A quantized version of our neural networks achieves 4x reduction in model size, and up to 2.5x inference speedup. These novel algorithms may be used to facilitate time-sensitive multimessenger astrophysics observations of compact binaries in dense stellar environments.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Gravitational-wave signal recognition of LIGO data by deep learning
    Wang, He
    Wu, Shichao
    Cao, Zhoujian
    Liu, Xiaolin
    Zhu, Jian-Yang
    [J]. PHYSICAL REVIEW D, 2020, 101 (10)
  • [42] Short gamma-ray bursts and gravitational-wave observations from eccentric compact binaries
    Tan, Wei-Wei
    Fan, Xi-Long
    Wang, F. Y.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 475 (01) : 1331 - 1339
  • [43] Eccentric Black Hole Gravitational-wave Capture Sources in Galactic Nuclei: Distribution of Binary Parameters
    Gondan, Laszlo
    Kocsis, Bence
    Raffai, Peter
    Frei, Zsolt
    [J]. ASTROPHYSICAL JOURNAL, 2018, 860 (01):
  • [44] Gravitational-wave Merger Forecasting: Scenarios for the Early Detection and Localization of Compact-binary Mergers with Ground-based Observatories
    Nitz, Alexander H.
    Schaefer, Marlin
    Canton, Tito Dal
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2020, 902 (02)
  • [45] Rapid Localization of Gravitational Wave Sources from Compact Binary Coalescences Using Deep Learning
    Chatterjee, Chayan
    Kovalam, Manoj
    Wen, Linqing
    Beveridge, Damon
    Diakogiannis, Foivos
    Vinsen, Kevin
    [J]. ASTROPHYSICAL JOURNAL, 2023, 959 (01):
  • [47] Concurrent estimation of noise and compact-binary signal parameters in gravitational-wave data
    Plunkett, Cailin
    Hourihane, Sophie
    Chatziioannou, Katerina
    [J]. PHYSICAL REVIEW D, 2022, 106 (10)
  • [48] Effect of metallicity on the gravitational-wave signal from the cosmological population of compact binary coalescences
    Kowalska-Leszczynska, I.
    Regimbau, T.
    Bulik, T.
    Dominik, M.
    Belczynski, K.
    [J]. ASTRONOMY & ASTROPHYSICS, 2015, 574
  • [49] Of Harbingers and Higher Modes: Improved Gravitational-wave Early Warning of Compact Binary Mergers
    Kapadia, Shasvath J.
    Singh, Mukesh Kumar
    Shaikh, Md Arif
    Chatterjee, Deep
    Ajith, Parameswaran
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2020, 898 (02)
  • [50] Importance of eccentricities in parameter estimation of compact binary inspirals with decihertz gravitational-wave detectors
    Choi, Han Gil
    Yang, Tao
    Lee, Hyung Mok
    [J]. PHYSICAL REVIEW D, 2024, 110 (02)