Gaussian interval quadrature formula

被引:0
|
作者
Bojanov, BD [1 ]
Petrov, PP [1 ]
机构
[1] Univ Sofia, Dept Math, Sofia 1164, Bulgaria
关键词
Mathematics Subject Classification (1991): 65D32, 65D30, 41A55;
D O I
10.1007/PL00005426
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of a Gaussian quadrature formula for Tchebycheff systems, based on integrals over non-overlapping subintervals of arbitrary fixed lengths and the uniqueness of this formula in the case the subintervals have equal lengths.
引用
收藏
页码:625 / 643
页数:19
相关论文
共 50 条
  • [41] On Mendeleev’s quadrature formula
    G. N. Pleshakov
    Computational Mathematics and Mathematical Physics, 2012, 52 : 211 - 212
  • [42] On a quadrature formula of Micchelli and Rivlin
    Univ of Sofia, Sofia, Bulgaria
    J Comput Appl Math, 2 (349-356):
  • [43] The Us(β, θ, α; ψ) classes and quadrature formula
    Temirgaliev, N.
    Doklady Akademii Nauk, 2003, 393 (05) : 605 - 608
  • [44] A quadrature formula for correlation integrals
    Dai, ST
    Winkler, P
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1997, 65 (05) : 513 - 518
  • [45] QUADRATURE FORMULA OF CLENSHAW AND CURTIS
    DENISENKO, PN
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1986, (04): : 71 - 73
  • [46] Quadrature formula for computed tomography
    Bojanov, Borislav
    Petrova, Guergana
    JOURNAL OF APPROXIMATION THEORY, 2010, 162 (10) : 1788 - 1792
  • [47] The Bernstein quadrature formula revised
    Barbosu, Dan
    Ardelean, Gheorghe
    CARPATHIAN JOURNAL OF MATHEMATICS, 2014, 30 (03) : 275 - 282
  • [48] Note on Romberg Quadrature Formula
    Gao, Shang
    Gao, Yi
    PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE OF MODELLING AND SIMULATION (ICMS2011), VOL 1, 2011, : 69 - 72
  • [49] GENERALIZATION OF SIMPSON QUADRATURE FORMULA
    SCHNOEGE, K
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1975, 55 (04): : 262 - 263
  • [50] Modifications of the Tchebycheff quadrature formula
    Bernstein, S
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1937, 204 : 1526 - 1529