Gaussian interval quadrature formula

被引:0
|
作者
Bojanov, BD [1 ]
Petrov, PP [1 ]
机构
[1] Univ Sofia, Dept Math, Sofia 1164, Bulgaria
关键词
Mathematics Subject Classification (1991): 65D32, 65D30, 41A55;
D O I
10.1007/PL00005426
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of a Gaussian quadrature formula for Tchebycheff systems, based on integrals over non-overlapping subintervals of arbitrary fixed lengths and the uniqueness of this formula in the case the subintervals have equal lengths.
引用
收藏
页码:625 / 643
页数:19
相关论文
共 50 条
  • [21] SOLUTION OF INTEGRAL TRANSPORT EQUATIONS IN CYLINDRICAL GEOMETRY USING GAUSSIAN QUADRATURE FORMULA
    KOBAYASHI, K
    NISHIHARA, H
    JOURNAL OF NUCLEAR ENERGY PARTS A AND B-REACTOR SCIENCE AND TECHNOLOGY, 1964, 18 (9PAB): : 513 - &
  • [22] ON A CERTAIN QUADRATURE FORMULA
    IRI, M
    MORIGUTI, S
    TAKASAWA, Y
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1987, 17 (1-2) : 3 - 20
  • [23] ON AN OSCULATORY QUADRATURE FORMULA
    RABINOWITZ, P
    BIT, 1983, 23 (01): : 139 - 140
  • [24] QUADRATURE FORMULA OF LAPLACE
    SCHNOEGE, K
    MATHEMATISCHE NACHRICHTEN, 1973, 58 (1-6) : 295 - 297
  • [25] OPTIMAL QUADRATURE FORMULA
    BOJANOV, BD
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1974, 27 (05): : 619 - 621
  • [26] The general Newton quadrature formula and the quadrature formula for Stieltje's integrals.
    Schmidt, R
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1935, 173 (1/4): : 52 - 59
  • [27] Gauss on Gaussian Quadrature
    Villarino, Mark B.
    AMERICAN MATHEMATICAL MONTHLY, 2020, 127 (02): : 125 - 138
  • [28] GENERALIZED GAUSSIAN QUADRATURE
    LUKE, YL
    TING, BY
    KEMP, MJ
    MATHEMATICS OF COMPUTATION, 1975, 29 (132) : 1083 - 1093
  • [29] TRIGONOMETRIC AND GAUSSIAN QUADRATURE
    KNIGHT, CJ
    NEWBERY, ACR
    MATHEMATICS OF COMPUTATION, 1970, 24 (111) : 575 - &
  • [30] Importance Gaussian Quadrature
    Elvira, Victor
    Martino, Luca
    Closas, Pau
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 474 - 488